欢迎来到速发表网!

关于我们 登录/注册 购物车(0)

期刊 科普 SCI期刊 投稿技巧 学术 出书

首页 > 优秀范文 > 人工智能论文

人工智能论文样例十一篇

时间:2023-03-08 15:36:42

序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇人工智能论文范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!

人工智能论文

篇1

2信息安全与人类生活的关系

信息安全包含的范围很广,大到国家军事机密,小到如何防范商业秘密和人身秘密。在目前的网络信息社会中,信息安全的实质就是要保护信息系统或信息网络中的信息资源免受各种类型的威胁、干扰和破坏,但是在我们的日常生活中,这种事情还是屡有发生。

2.1信息安全对人们生活的影响

(1)对信息服务的破坏。

一是信息的泄露,被某个未被授权的实体或者是个人获得用于不法目的,而且在这个过程中,可能导致信息被非法转让、删减或者是破坏,让原来信息拥有者的信息失去真正的意义;二是被拒绝服务,这是对信息或者是相关资源的合法访问被无条件阻止。

(2)非法使用对合法权的破坏。

这主要是某一资源被某个非授权的人,或以非授权的方式使用。一是窃听。用各种可能的合法或非法的手段窃取系统中的信息资源和敏感信息。例如对通信线路中传输的信号搭线监听,或者利用通信设备在工作过程中产生的电磁泄露截取有用信息等。通过对系统进行长期监听,利用统计分析方法对诸如通信频度、通信的信息流向、通信总量的变化等参数进行研究,从中发现有价值的信息和规律。二是假冒。通过欺骗通信系统(或用户)达到非法用户冒充成为合法用户,或者特权小的用户冒充成为特权大的用户的目的。黑客大多是采用假冒攻击。攻击者利用系统的安全缺陷或安全性上的脆弱之处获得非授权的权利或特权。例如,攻击者通过各种攻击手段发现原本应保密,但是却又暴露出来的一些系统“特性”,利用这些“特性”,攻击者可以绕过防线守卫侵入系统的内部破坏

2.2信息安全受到威胁的分类

(1)授权侵犯

被授权以某一目的使用某一系统或资源的某个人,却将此权限用于其他非授权的目的,也称作“内部攻击”。在某个系统或某个部件中设置的“机关”,使得在特定的数据输入时,允许违反安全策略。

(2)木马攻击。

软件中含有一个觉察不出的有害的程序段,当它被执行时,会破坏用户的安全。这种应用程序称为特洛伊木马(TrojanHorse)。计算机病毒:一种在计算机系统运行过程中能够实现传染和侵害功能的程序。

(3)人为原因。

一个授权的人为了某种利益,或由于粗心,将信息泄露给一个非授权的人。信息被从废弃的磁碟或打印过的存储介质中获得。侵入者绕过物理控制而获得对系统的访问。重要的安全物品,如令牌或身份卡被盗。业务欺骗:某一伪系统或系统部件欺骗合法的用户或系统自愿地放弃敏感信息等等

3人工智能对信息安全的影响和未来发展趋势

随着人工智能的不断发展和应用方法的不断成熟,人工智能在信息安全保障的服务能力将更加强大,人工智能也将处于计算机网络发展的前沿,与计算机发展的轨迹同行。笔者仅就人工智能在信息安全的具体领域“数字水印”的研究展开论述,分析未来人工智能与信息安全的密切关系。

3.1数字水印的定义

数字水印技术的基本思想源于古代的密写术。古希腊的斯巴达人曾将军事情报刻在普通的木板上,用石蜡填平,收信的一方只要用火烤热木板,融化石蜡后,就可以看到密信。使用最广泛的密写方法恐怕要算化学密写了,牛奶、白矾、果汁等都曾充当过密写药水的角色。可以说,人类早期使用的保密通信手段大多数属于密写而不是密码。然而,与密码技术相比,密写术始终没有发展成为一门独立的学科,究其原因,主要是因为密写术缺乏必要的理论基础。

数字水印(DigitalWatermark)技术是指用信号处理的方法在数字化的多媒体数据中嵌入隐蔽的标记,这种标记通常是不可见的,只有通过专用的检测器或阅读器才能提取,因为当前的性信息安全技术都是以密码学为基础,计算机处理能力提高后,这种密保措施已经越来越不安全,因此数字水印就是人工智能跨速发展的结果,数字水印是信息隐藏技术的一个重要研究方向,这对于信息安全有着超强的保护能力。

3.2数字水印的特征

(1)隐蔽性:

在数字作品中嵌入数字水印不会引起明显的降质,并且不易被察觉。

(2)超强安全性:

水印信息隐藏于数据而非文件头中,文件格式的变换不应导致水印数据的丢失。

(3)不可丢失性:

是指在经历多种无意或有意的信号处理过程后,数字水印仍能保持完整性或仍能被准确鉴别。可能的信号处理过程包括信道噪声、滤波、数/模与模/数转换、重采样、剪切、位移、尺度变化以及有损压缩编码等。

3.3发展前景

(1)实现数字化作品产权信息保护。

计算机网络的发达,让数字作品(如电脑美术、扫描图像、数字音乐、视频、三维动画)的版权保护成为当前的热点问题。但是数字作品的拷贝、修改非常容易,而且可以做到与原作完全相同,“数字水印”利用数据隐藏原理使版权标志不可见或不可听,既不损害原作品,又达到了版权保护的目的。目前,用于版权保护的数字水印技术已经进入了初步实用化阶段,IBM公司在其“数字图书馆”软件中就提供了数字水印功能,Adobe公司也在其著名的Photoshop软件中集成了Digimarc公司的数字水印插件。

(2)商务票据信息安全保护。

随着高质量图像输入输出设备的发展,特别是精度超过1200dpi的彩色喷墨、激光打印机和高精度彩色复印机的出现,使得货币、支票以及其他票据的伪造变得更加容易。网络安全技术成熟以后,各种电子票据也还需要一些非密码的认证方式。数字水印技术可以为各种票据提供不可见的认证标志,从而大大增加了伪造的难度。

(3)重要声像数据信息安全保护。

篇2

    在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。

    计算机与人工智能

    "智能"源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而 理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machines who thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联 系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了"自动机"理论,把研究 会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。

    人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(artificial intelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以 及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行 情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的"深 蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。

    当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发 展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的 现实应用的基础。90年代以来,人工智能研究又出现了新的。

    我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。

    问: 目前人工智能研究出现了新的,那么现在有哪些新的研究热点和实际应用呢?

    答: ai研究出现了新的,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容 量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。

    智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的 翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显 著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。

    数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据 挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半 结构化和非结构化数据中的知识发现以及网上数据挖掘等。

    主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务, 而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多 主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多 主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。

    问: 您在人工智能领域研究了几十年,参与了许多国家重点研究课题,非常清楚国内外目前人工智能领域的研究情况。您认为目前我国人工智能的研究情况如何?

    答: 我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础 上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技 术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。

    但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是: 课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走; 立项论证时,惯于考虑国外怎么做; 落实项目时,又往往顾及面面俱到,大而全; 再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。

    今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。

     问: 请您预测一下人工智能将来会向哪些方面发展?

    答: 技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展: 模糊处理、并行化、神经网络和机器情感。

    目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来 人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明: 情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。

    人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。

    什么是人工智能?

    人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的 角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。

    ai理论的实用性

    在一年一度at&t实验室举行的机器人足球赛中,每支球队的"球员"都装备上了ai软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白 有些情况下不能死守岗位。尽管现在的ai技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。

    这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和 无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以 大大减少网络堵塞。

    我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。

    未来的ai产品

篇3

过去传统的控制器在进行工作的时候会遇到很多外界因素或者机器自身的问题的干扰,并且会对工作造成不良影响。但是人工智能技术在这方面的优势则比较明显。例如,人工智能技术不需要精确的动态模型,所以,即使模型设置的参数发生了变化,也不会对其造成太大的影响,而且其对环境的要求也不苛刻。所以,人工智能技术在其运行的过程中,可以不受不确定因素的影响,并且可以实现较为精准的自动化控制。

1.2人工智能技术产生的误差小

人工智能技术在运行过程中基本不受到来自外界的影响,而且其本身的抗干扰能力就很强,所以,一旦提前对系统设定了参数,那么在操作过程中就不用担心参数发生变动。这些参数在整个过程中会保持在一个值域之内,所以不需要担心会有较大的差值,因此其工作效率也比较高。

2人工智能在电气自动化中的应用

2.1智能控制和保护功能

2.1.1进行操作控制。

在进行操作的过程中,使用人员可以通过键盘或鼠标对隔离开关、断路器等进行现场的或者远程的控制,对励磁电流进行精准的调整。除此之外,还能够进行带负荷操作和停机操作,对相关的人员的权限进行限制。

2.1.2对相关数据的收集和处理。

人工智能技术对所有开关量、模拟量数据进行实时的采集,而且根据先前设计好的要求进行定时批量的存贮以及整理等工作。设置和修改某些参数,及时地保护软压板的退投。

2.1.3对设备的管理。

人工智能在对电力系统进行管理的时候,可以对运行日志进行自动保存,并生成报表的存储或打印、描绘系统运行曲线等。

2.1.4实行有效的监控。

智能技术能够对模拟量与开关量进行全程同步的监测,当检测过程发生异常时,则可以选择多种模式进行报警,同时还可有序地记录系统里的各项事件、在线分析负序量计算等。

2.1.5对画面的显示。

人工智能技术可以运用图像生成软件进行真实画面模拟,可以对有关设备和整个系统的工作运行进行模拟,并且最终以画面的形式显现到屏幕上。

2.1.6进行故障录波。

智能技术对故障波形的获取具有良好的功能,在获取的同时还可以做好相关的记录,对模拟量故障及时地进行录波和捕捉相关波形。

2.2智能信息检索

作为人类智能的模拟理论而产生的新兴技术方法,人工智能具有良好的信息检索功能。其不仅可以对网络中出现的较为模糊和不确定性的因素进行科学的换算以及推理,还可以根据信息检索的结果提出一些切实可行的解决方案。人工智能技术的优势还在于它可以将正确的指令精确无误的传达给各种机器,进而机器在接受到指令后能够进行正确、正常的运转,确保任务的完成。3.3提高电气自动化性能,提高产品质量人工智能系统具有优越的条件,其模拟人类智能,并将人工智能技术中的遗传算法投入到电器产品的应用中。利用人工智能技术,可以将产品的性能优化,假如可以科学合理地把人工智能技术运用到电气自动化的控制中,那么电子自动化性能就会得到显著的改善,电气设备的运行效率也会被大大提高,电气自动化控制的准确性便有所保障。这样一来,就可以减少在电气工程自动化中人力资源的使用,劳动成本也可以随之降低,进而推进电气工程事业的发展。此外,人工智能技术还可以在各种电器产品的会设计中辅助进CAD,使产品的开发周期得到有效缩短,并且能够对提高CAD技术的开发和应用程度有很大的帮助,设计难度也会有所降低,产品的质量自然就会提高。

2.4电气设备优化设计

有关电气设备的优化设计工作是比较复杂的,需要结合多方面的理论知识,比如电磁场、电机电器、电路等相关知识,此外还需要丰富的设计经验知识。过去的电气产品设计效率很低,一般是因为缺乏相关的技术的支持,再加上工作量本身就很大,所以整个设计就显得比较难,很少有科学合理的设计。但是如今计算机技术发展迅速,手工设计逐渐被计算机辅助设计(CAD)所代替,产品的开发周期缩短了,设计人员的设计产品质量和设计的效率也提高了,而且设计已经越来越趋于智能化和高效化。人工智能技术在电气产品的优化设计应用中,主要有两种方法,即专家系统和遗传算法。其中,遗传算法可以直接操作结构对象,对优化和自动获取搜索空间、自行调整搜索的方向方面具有指导作用,而且采用先进的计算方法,计算结果很精确,因此在电气产品的智能化优化设计中应用广泛。而专家系统则不同,它是主要依据相关领域的一个或是多个专家所提供经验与知识来进行工作的,它是一个对专家的决策过程进行模拟的过程,从而对需要人类专家处理的问题进行处理,这种方式也比较重要。当然,除此两种方法还有很多其他方法,比如神经网络、模糊逻辑等。

篇4

一、相关概念

(一)人工智能。人工智能是一门研究、理解和模拟人类智能,并且发现其内在规律的学科。它是计算机科学的一个分支,试图发现智能的实质,并创造出一种以人类思考的方式做出相似反映的智能机器。同时,它又是计算机知识、心理学知识和哲学知识的集合,模拟人的意识和思维过程,让机器能够做到只有人类智慧才能做到的复杂的事项。

(二)智能家居。智能家居是嵌入式技术、通信技术和网络技术的集合,通过系统将各种家居与人们的居家生活紧密结合,以提高人们生活的舒适感和安全感。随着人工智能的迅猛发展,智能家居正与人工智能紧密结合,让消费者享受到更人性化的居家体验。

二、文献综述

欧阳婷梓研究了人工智能对智能家居的影响,认为人工智能应用的落地将会使智能家居产业升级,同时还指出Al技术还有待突破,市场决定人工智能能否再次爆发。荣华英和兼国恩研究了人工智能发展背景下国际智能家居行业贸易发展前景,认为国际智能家居行业贸易将朝智能产品设计、智能生产制造、智能高效物流和智能商业服务方向发展。吴斌在研究我国智能家居系统发展存在的问题时,指出要制定行业标准体系,降低系统成本并完善售后服务。

观察现有研究,发现有关人工智能时代下智能家居行业发展的研究仍相对较少,本文指出Al对智能家居行业发展的影响,指出未来发展机遇,并预测未来该行业的发展趋势,对行业发展具有指导意义。

三、智能家居行业发展现状

(一)国际智能家居行业发展现状。美国的Amazon Echo、Google Home和Apple HomeKit占据了国外的智能家居语音控制平台市场,Contro14 利用Zigbee技术可以与世界知名品牌的家电产品连接,控制各种设备和系统;英国的Laing Homt公司早在2000年建立了“智能家居”示范街,给每栋房子都装上了智能管理系统,近年也在国内建立起了一些智能家居体验式展厅;日本软银生产的Pepper人形情感机器人能够读懂人类的情感,并做出相应的反映,在各种场合为人们服务,松下于2017年“Panasonic Home+全屋智能”战略,让全屋各个部分的功能都智能化;德国的Apartimentum未来型公寓将物联网应用和先进科技结合起来让住户的生活更加简洁舒适。据中国报告大厅的《2016-2021年中国智能家居产业市场运行暨产业发展趋势研究报告》数据显示智能家居市场规模逐年上涨,但增长速度开始放缓,随着人工智能的发展,行业开始进入技术融合,技术沉淀打造更加智能的家居用品的阶段,2016~2018年全球智能家居市场规模变化如图1所示。

(二)国内智能家居行业发展现状。2012年智能家居行业进入快速发展期,深受大众追捧,但进入2015年,销售增速开始放缓,随着政策的扶持,2016年市场规模增速开始上涨。工信部数据显示,我国物联网产业规模发展迅速,2010年规模超过2,600亿元,2015年达到7,500亿元,2020年产业规模将突破15,000亿元,物联网在智能家居、智能社区和智慧城市等领域发展愈发强劲。面对如此红利,相关企业加快布局,海尔建立U-home平台、美的建立M-Smart平台、阿里巴巴建立人工智能实验室并了智能音箱等产品。据中国报告大厅的《2016-2021年中国智能家居产业市场运行暨产业发展趋势研究报告》数据显示,未来几年智能家居市场规模持续上涨,市场前景看好,市场规模增长情况如图2所示。

智能家居产业错综复杂,涉及众多产品,根据目前各企业涉及的领域,大致分为六个流派:以海尔、美的为代表的传统家电企业,通过将原有的产品智能化提高销售;以阿里巴巴和京东为代表的互联网企业,通过自产智能硬件或与传统家电企业建立合作涉足智能家居行业;以华为和小米为代表的手机硬件企业,通过研发软件、生产硬件和建立智能家居生态系统进军智能家居行业;以Honeywell、Bosch和松下为代表的安防企业,在本身安防设备的基础上智能化,占据智能家居安防市场;以Amazon Echo和Google Home为代表的国外智能家居企业,通过语音识别和人工智能技术进军国内市场;以及一些提供云平台服务和小型硬件的供应商。

四、当前智能家居行业面临的问题

(一)缺乏规范统一的标准。在整个智能家居产业中,至今还没有制定统一的标准,导致各大公司各行其道,各自开发自己的系统,与其他厂商开发出来的系统并不兼容,目前具有代表性的是谷歌、苹果、微软加入了高通主导的AllSeen联盟,英特尔、三星、戴尔等公司组成了智能家居设备标准联盟OIC。之后,谷歌在收购Nest之后力推Thread,苹果自家提出Homekit。一方面用户的智能体验降低;另一方面加重了用户的转换成本。而人工智能是一项复杂的产业,它不是一两家公司就能经营好的,它需要各领域的公司参与进来研发技术、搭建平台、生产终端,各司其职,并用统一的标准将各个环节连接起来。

(二)缺乏人性化的伪智能。目前,智能家居产品大多通过手机来实现,但有些厂商以“智能”为噱头,将原本简单的操作强加到手机上,使得手机承担较多的功能。然而,除了年轻人对智能手机的操作较为熟悉,其他用户面对复杂的“智能”操作只能望而却步,严重缺乏人性化设计。

(三)需求低且价格高。一方面智能家居概念映入人们眼帘的时间较短,人们对智能家居还不太了解;另一方面智能家居智能化水平不高,操作复杂,运行过程中经常出错,严重打击了消费者的体验。同时,目前的技术水平有限,技术和产品的研发需要较高的研发费用,加上日常的维护费用,导致智能家居的消费价格偏高,打击了消费者的购买欲望。

(四)信息安全存在隐患。物联网信息传输过程中,个人信息极易被黑客窃取,不法分子通过这些个人信息进一步窃取用户的财产,会造成巨大的社会不稳定,对智能家居未来发展构成巨大威胁。如果智能家居产业在未来想占据较大一部分家居市场,就必须克服信息安全问题,加大信息的监管力度。

五、Al助力智能家居行业发展

(一)AI与智能家居结合进入最终状态。经过几十年的发展,智能家居经过了用App远程控制家电的单品智能化和多个电器间相互感应的智能互动两个阶段,以上两个阶段均为弱智能阶段,得通过手机来操作。而第三阶段是家居产品与人工智能的深入结合,赋予家居产品人性化,摆脱手机的操控,通过自主学习、主动记忆、自主决策为用户提供舒适的生活。

(二)提升全新的交互体验。语音交流以其与人交流的亲和感,成为当今最流行的人机交互方式。人类通过语音给机器下达指令,机器通过语音识别执行指令。近几年,语音识别技术取得重大突破,语音识别准确率达到97%以上。而智能音箱具有语音交互、提供音乐和有声读物等媒体内容、提供多种互联网服务以及可以对智能家居进行控制等功能,深受大众追捧,因而被称为智能家居的入口。为抢占智能家居的入口,互联网各大巨头纷纷加紧研究抢占市场。2014年11月,亚马逊推出智能音箱Echo,至今已有几千万的销量,随后谷歌推出GoogleHome,微软推出Cortana,紧接着国内的京东推出叮咚音箱,阿里巴巴也推出了“天猫精灵”,小米推出“小爱同学”。

(三)提供更安全、可控的应用环境。传统的密码输入和保护方式已经不再满足人们对操作便捷性和安全性的要求,于是推动了人们对生物识别技术的开发。生物识别是指通过计算机与生物传感器等高科技结合,提取人固有的生理特征和行为特征,以鉴定个人身份。目前人脸识别、指纹识别和虹膜识别已经得到广泛的应用。为达到更高的安全水准,通过红外线照射获取手指静脉图像的指静脉技术也在紧密研究当中,极大地迎合了人们对智慧生活的追求。

六、我国智能家居发展的机遇

(一)我国加速进入老龄化社会,智能家居需求增大。因为工作关系很多子女与父母在异地生活,难以妥善地照顾好父母的生活,而智能家居可以方便老人们的日常生活,提高老年人的生活质量,加上多年财富的积累,老年人的经济实力比年轻人要高,随着老龄化进程的加快,老年人人口的比例将加重,多重原因结合起来支撑起了未来潜在的市场需求。

(二)“智能家居”概念将越来越普及。通过前些年“智能家居”概念的炒作,各大新闻客户端、网站的转载宣传,让越来越多的人认识了解到智能家居的相关概念。近些年各大浏览器对“智能家居”关键词的搜索数量大幅度增长,随着科学技术的发展,人们对智能家居产品的信赖感也在增强。如今人们购买家具,对房屋进行装修也会考虑适当引进智能家居的相关元素进入日常的起居中。

(三)居民收入增多,消费价格将降低。随着经济的不断发展,人们的收入也在逐年上涨,到2020年我国将全面建成小康社会,届时人们的收入水平将会大幅增长,相比2010年翻一番。经济增长的同时,科技也在飞速发展,技术水平的不断完善降低了智能家居产品的成本,同时电信运营商的网络费用也在下调,日常的运营维护成本也在下降,消费者的消费成本将会大幅下降,市场需求将会激增,市场规模将会扩大。

(四)政策扶持,发展道路顺畅。智能家居产业发展被写入政府工作报告,政府相继出台《“互联网+”人工智能三年行动实施方案》、《智能制造工程实施指南(2016-2020年)》、《促进新一代人工智能产业发展三年行动计划(2018-2020年)》等指导性文件,促进智能家居、智能机器人、智能制造装备等领域产业发展。并成立“中国人工智能产业创新联盟”和“人工智能产业技术创新战略联盟”,把涉及人工智能领域的所有环节全面整合,扫除阻碍人工智能发展的一切障碍。

七、我国智能家居行业未来发展趋势

(一)标准日趋统一。当智能家居行业依旧遵循现在的发展方式,各企业各行其道,系统间互不兼容,消费者将会对该行业产生疲倦,未来市场规模可能难以扩大。除非出现一家领导性标杆企业,拥有自己的系统,能够生产出所有类别的智能家居产品,用户对该企业提供的方方面面都很满意,进而垄断了整个智能家居市场。很显然,出现这种情况的概率很小,没有一家企业可以力挽狂澜,所以市场逼着企业间建立起统一的标准,为用户提供便捷舒适的生活体验。

(二)AI与智能家居的完美融合。人工智能在智能家居领域的广泛应用已是大势所趋,只有智能家居与人工智能的完美结合才会让人们的生活更加便捷。未来智能家居将会更加智能化、人性化,能够准确抓住用户的喜好提供相应的服务,根据用户的工作安排相应的行程。一整套智能家居系统犹如一个智能管家,在最优的时间提供最优的服务。

(三)个人信息更加安全。个人信息的安全是制约智能家居市场规模扩大的又一要素,因此行业内将建立起一套世界领先的信息安全标准,并且该标准能够和各地的法律法规衔接好,收集到的数据能够安全地储存好,能够记录数据的产生时间地点等情况,以便需要的时候能够查证。

八、结语

人工智能时代下智能家居行业仍将在相当的一段时间处于一个无统一标准、需求低、价格高的阶段,但随着老龄化进程的加快,智能家居概念的逐渐普及、居民收入不断增加、产品价格的不断下降,智能家居产品的市场需求将会逐渐增长,将促使企业间制定规范统一的标准,人工智能将会与智能家居完美结合,为用户提供更加舒适便捷的生活。

(来源:合作经济与科技 文/陈功正 王腾 陆畅 王蕴鑫 陈黎阳 编选:电子商务研究中心)

主要参考文献

[1]陈晋.人工智能技术发展的伦理困境研究[D].吉林大学,2016.

[2]邓中祚.智能家居控制系统设计与实现[D].哈尔滨工业大学,2015.

篇5

2人工智能技术在飞行冲突探测与解脱管理方面的应用

人工智能技术的应用可以使空中交通管理系统具有高智能化的特征,从而满足飞行冲突与解脱管理方案自动生成的需要。具体来说,实现这一功能的模块是飞行冲突探测与解脱辅助决策模块,而该模块是由冲突探测与解脱系统和辅助决策系统组成的。该模块不但可以实现飞行冲突的预测,还可以为管制人员提供飞行冲突调配的决策方案,从而减轻管制人员的压力,帮助他们做出正确的决定。所以,该系统的应用,弥补了人类与机器各自存在的不足,从而有效的避免了因人为失误或机械故障而造成的飞行事故。从原理角度来看,系统首先通过分析飞行冲突情况来制定可能的解脱方案,然后根据航空器优先级分类方法和冲突类型判定法等多种规则,进行方案的选择和排除。在这一推理过程中,为了保证系统推理的有效性,系统需要根据大量的规则来进行方案的推理选择。而这些规则,则要被统一存入知识库系统中。这样,管制人员只要在平时做好知识库系统的更新和维护,就能够保证系统推理的有效性,从而根据系统提供的方案,来进行飞行冲突航班的排序。

篇6

近些年来,逐渐新兴了一种科学技术,也就是人工智能,它有着较为广泛的研究范围,涉及到诸多方面的内容,如哲学、认知科学、神经生理学、心理学等,这些不同的学科领域,都将人工智能作为互相渗透的平台,进而形成一种综合性的学科。具体来讲,人工智能是借助于计算机,来对人的某些思想和智能行为进行模拟,在诸多方面都可以应用。从本质上来讲,人工智能就是将一些比较复杂的工作由机器人来完成。

2人工智能在电气工程中的优势

2.1不会受到其他因素较大的干扰:传统的控制器在构建模型的过程中,很多因素都会对其造成影响,比如模型设置参数发生了改变、计算中数值的类型发生了改变等等,而将人工智能应用到电气自动化中,不需要对精确的动态模型进行获取,要没有其他的要求,不会受到外界较大的影响。

2.2可以方便的调节相关参数:通过适当调整人工智能的相关参数,可以促使智能函数的性能得到有效提升,相较于传统的控制器,人工智能控制调节起来更加的方便,并且比较的简单,有着较强的适应能力,人工智能控制器可以结合相应数据,借助于相应的信息来进行设定,可以结合具体情况来适当的修改和扩展设定的参数。

2.3具有较好的一致性:传统的控制方法都是针对特定目标,这种控制方法对于特定目标有着较好的效果,但是却无法控制其他的对象。相较于传统的控制方法,电气工程中人工智能控制一致性较好,即使驱动器有着不同的特性,将一些新的未知数据给输入进来,它们也可以科学的判断和估计。

3人工智能在电气工程自动化中的应用

3.1优化设计电气设备:这个工作比较的复杂,需要具备较为丰富的基础知识,并且能够将过去积累的设计经验给充分运用起来。过去在产品设计中,通常采用的是人工手动制作,那么就很难获得最优方案。如今,计算机技术获得了飞速发展,计算机辅助设计逐渐取到了传统的手工设计方式,那么就在较大程度上缩短了产品开发周期。通过将人工智能引入到CAD技术中,可以促使设计产品质量和设计效率得到提升。研究表明,主要是将遗传算法和专家系统应用到电气产品的优化设计中;遗传算法因为比较的先进,计算结果有着较高的精度,因此,在电气产品的优化设计已经开始广泛应用遗传算法和衍生算法。专家系统也得到了广泛的应用,电气设备故障的发生,往往是不确定和突发的,但是故障发生之前,会有一些预兆出现。那么采用专家系统,就可以有效诊断故障。

3.2诊断电气设备的事故以及故障:在电气领域中,采用传统的诊断方法,往往没有较高的准确性,并且对于一些重要设备,如发动机、发电机、变压器等,很容易出现故障和事故。过去的方法是对变压器油产生的气体进行收集和分析,然后结合分析结果来判断故障,这样大量的时间资源就会遭到消耗,并且浪费人力成本。要知道,事故和故障都是突然出现的,需要快速的解决,如果无法及时诊断,或者是采取了不正确的处理方法,那么就会带来较为严重的后果。针对这种情况,可以将人工智能技术的神经网络、模糊理论和专家技术等融入到电气故障和事故诊断中,这样故障诊断准确率就可以得到大幅度的提升,生产效率得到提高。

3.3分析电气控制过程中的有效应用:电气控制在电气化系统发挥着十分重要的作用。电气控制要求技术人员严格进行操作,并且有着较为复杂繁琐的操作步骤。那么相关的研究工作人员,一直努力解决的问题就是对操作效率进行提升。针对这种情况,就可以将人工智能给应用过来,人工智能化将计算机或者自动计算等先进技术给应用了过来,对于部分人类劳动可以代替,采用界面化的形式,这样日常操作过程中的操作流程就得到了简化,并且可以远程控制和操作电气系统。此外,还可以及时储存某些重要的信息和资料,这样日后查阅起来更加的方便。借助于本项技术,还可以生成报表,那么就不需要投入较多的人力物力资源,工作效率和工作质量得到了显著提升。在这个方面,主要是应用专家系统控制、神经网络控制以及模糊控制等等,其中,借助于电气传动过程中的直流及交流传动作用,就可以有效实现模糊控制。

3.4实现控制及保护功能:如今人工智能可以自动实时采集和处理所有开关量和模拟量数据,并且结合一定的要求,定制整理。借助于图像生产软件,可以真实模拟显示电子系统的历史运转情况。操作人员结合实际情况,分析相关的数据,构建图表。相较于正常的字符数据,图像和画面需要占用更多的系统资源,因此,还需要将实际控制端设备的硬件条件给充分纳入考虑范围,这样就可以避免因为对大量运算资源耗费,而对其他重要控制程序的运行造成影响,甚至是出现卡死问题。在操作控制方面,操作人员借助于键盘或者鼠标,可以现场以及远程控制隔离开关与断路器等等。

篇7

2计算机网络技术的问题

目前,随着计算机技术的广泛应用,人们愈发重视有关网络信息安全问题。在网络管理系统的应用过程中,用户最为关注的功能便是网络监视与网络控制,其中,为正常发挥网络监视及网络控制这两大功能,就需要对信息急性及时获取与准确处理。网络传输的数据通常是不连续、不规则的,而在早期阶段,计算机只具备逻辑化分析及处理数据的功能,难以准确判断出数据的真实性,因此,为从大量繁复的信息中,挑选出有效的信息,实现计算机网络技术的智能化具有非常重要的意义[2]。计算机的应用日益广泛与深入,这使得用户需要通过网络安全管理来为其信息安全提供保障,而网络犯罪现象的增多,使得计算机必须具备灵敏的观察能力及迅速的反应能力否则便难以对侵犯用户信息的各种违法犯罪行为进行有效遏制。为促进网络安全管理的实现,就需要将以人工智能技术为基础而建立起来的智能化管理系统作为有效手段,自动收集信息数据,及时诊断运行故障,并在线分析趋势及性能等,从而确保计算机发生网络故障时,可做出快速、准确的反应,并采取有效措施来恢复计算机的网络系统。由此可知,针对计算机网络中存在的问题,就需要应用人工智能技术,在其内部建立完善的网络管理及防御系统,从而为用户信息安全提供充分保障。

3计算机网络技术中人工智能的应用分析

在计算机网络技术中应用人工智能,可极大程度满足人们对计算机提供人性化及智能化服务的需求。其中,计算机网络技术智能化服务主要指的是智能化的人机界面、信息服务、系统开发及支撑的环境这几个方面,与此同时,这些需求进一步促进了人工智能在计算机网络技术,尤其是在智能人机界面、网络安全及系统管理评价等方面的应用进程。

3.1人工智能在计算机网络安全管理中的应用。在计算机网络技术中,人工智能得到了极为广泛的应用。在计算机网络安全管理中,人工智能的应用主要表现在智能防火墙、入侵检测、智能型反垃圾邮件系统这三个方面。相比于其他防御系统,智能防火墙系统采用的是智能化识别技术,例如,通过概率、统计、记忆、决策等方法,来识别并处理有关信息数据,不但有效减少了计算机匹配检查过程中的庞大计算,而且大大提高了发现网络有害行为的效率,从而实现了限制访问及拦截有害信息的功能;此外,与传统防御软件相比,智能防火墙系统具有更高的安检效率,从而将拒绝服务共计这一普通防御软件普遍发生的问题进行有效解决,实现了高级应用的入侵及病毒传播的有效遏制[3]。作为计算机网络技术安全管理的一项重要环节,入侵检测起着保证网络安全的关键作用,同时也是防火墙技术的核心部分。计算机系统资源的保密性、完整性、安全性等均与网络系统入侵检测功能的有效发挥有着紧密联系。入侵检测技术通过采集、筛选、分类、处理信息数据,在形成最终报告的基础上,将当前计算机网络系统的安全状态及时反映给用户。现阶段,人工智能在模糊识别、专家及人工神经网络等系统入侵检测中,得到了非常广泛的应用。计算机网络安全管理中的智能型反垃圾邮件系统,是一项以人工智能技术为基础而研发出来的防护技术,其针对的对象为垃圾邮件。此项技术可在不对用户信息安全造成影响的前提下,有效监测用户的邮件,并在完成邮箱内垃圾邮件的开启式扫面后,将垃圾邮件分类信息提供给用户,提醒其对可能对自身不利或对系统造成危害的信息进行尽早处理,进而确保整个邮箱的安全性,

3.2人工智能在计算机网络系统管理及评价中的应用。计算机网络管理的智能化发展,离不开人工智能技术及电信技术的发展。除了应用在计算机网络安全管理中,人工智能技术中的问题求解技术及专家知识库等,均可促进计算机网络综合管理的实现。由于网络具有瞬变性及动态性的特点,因而给计算机网络管理工作增加了一定的难度,这同时也使得现代化网络管理工作朝着智能化的方向发展。其中,以人工智能理论为发展基础的专家级决策及支持方法,在信息系统的管理工作中得到了广泛应用。作为一项智能计算机程序,专家系统可累积尽可能多的专家经验与知识,并通过进行归纳与总结,在形成资源录入系统的基础上,利用这一汇集了多位特定领域中的专家经验的系统,对此领域中相似的其他问题进行解决。因此,对于计算机网络管理及其系统评价,可通过众多专家系统来开展计算机网络管理及系统评价等大量工作。

篇8

1997年5月11日,名为“深蓝”的电脑毫无悬念地在标准比赛时限内击败了国际象棋男子世界冠军卡斯帕罗夫,从而证明了在有限的时空里电脑“计算”可以战胜人脑“算计”,进而论证了现代人工智能的基础条件(假设)——物理符号系统具有产生智能行为的充分必要条件(Newell and Simon,1976)是成立的。更有意思的是,2011年2月17日,一台以IBM创始人托马斯·沃森的名字命名的电脑在智力问答比赛中“狂虐”两位最聪明的美国人而夺得冠军,2016年3月9日至3月15日,“围棋名誉九段”AlphaGo在首尔以4:1的比分战胜了围棋世界冠军李世石九段,从而引发了人工智能将如何改变人类社会生活形态的话题。

人工智能是人机环境系统交互的产物

众所周知,当前制约机器人科技发展的瓶颈是人工智能,人工智能研究的难点是对认知的解释与建构,而认知研究的关键问题则是自主和情感等意识现象的破解。生命认知中没有任何问题比弄清楚意识的本质更具挑战性,或者说更引人入胜。这个领域是科学、哲学、人文艺术、神学等领域的交集。尽管意识问题如此重要,令人啼笑皆非的是:无论过去还是现在,一旦涉及到意识问题,大家不是缄口不提,就是敬而远之,避之唯恐不及。究其原因,不外乎意识的变化莫测与主观随意等特点严重偏离了科学技术的逻辑实证与感觉、经验、验证、判断,既然与科学技术体系相距较远,自然就不会得到相应的认同与支持了,这好像是顺理成章、理应如此的!然而,最近科技界一系列的前沿研究正悄悄地改变着这个局面:研究飘忽不定的意识固然不符合科技的尺度,那么在意识前面加上情境(或情景)二字呢?人在大时空环境下的意识是不确定的,但“格物致知”一下,在小尺度时空情境下的意识应该有迹可循吧!自古以来,人们就知道“天时地利人和”的小尺度时空情境对态势感知及意识的影响,只是明确用现代科学的手段实现情境(或情景)意识的研究是源自1988年Mica Endsley提出的Situation Awareness(SA)概念框架:“…the perception of the elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future.”(在一定的时间和空间内对环境中的各组成成分的感知、理解,进而预知这些成分的随后变化状况)但这只是个定性分析概念模型,其机理分析与定量计算还远远没有完善。

在真实的人机环境系统交互领域中,人的情景意识(Situation Awarensss)SA、机器的物理SA、环境的地理SA等往往同构于统一时空中(人的五种感知也应是并行的),对于人而言,人注意的切换产生了不同的主题与背景感受/体验。在人的行为环境与机的物理环境、地理环境相互作用的过程中,人的情景意识SA被视为一个开放的系统,是一个整体,其行为特征并非由人的元素单独所决定,而是取决于人机环境系统整体的内在特征,人的情景意识SA及其行为只不过是这个整体过程中的一部分罢了。另外,人机环境中许多个闭环系统常常是并行或嵌套的,并且特定情境下这些闭环系统的不同反馈环节信息又往往交叉融合在一起,起着或刺激或抑制的作用,不但有类似宗教情感类的柔性反馈(不妨称之为“软调节反馈”,人常常会延迟控制不同情感的释放),也存在着类似法律强制类的刚性反馈(不妨称之为“硬调节反馈”,常规意义上的自动控制反馈大都属于这类反馈)。如何快速化繁为简、化虚为实是衡量一个人机系统稳定性、有效性、可靠性大小的主要标志,是用数学方法的快速搜索比对还是运筹学的优化修剪计算,这是一个值得人工智能领域深究的问题。

人机环境交互系统往往是由有意志、有目的和有学习能力的人的活动构成,涉及变量众多、关系复杂,贯穿着人的主观因素和自觉目的,所以其中的主客体界线常常模糊,具有个别性、人为性、异质性、不确定性、价值与事实的统一性、主客相关性等特点,其中充满了复杂的随机因素的作用,不具备重复性。另外,人机环境交互系统有关机(装备)、环境(自然)研究活动中的主客体则界线分明,具有较强的实证性、自在性、同质性、确定性、价值中立性、客观性等特点。无论是在古代、中世纪还是在现代,哲学宗教早已不单纯是意识形态,而且逐渐成为各个阶级中的强大的政治力量,其影响不断渗透到社会生活的各个领域,更有甚者,把哲学、政治、法律等上层建筑都置于宗教控制之下。总之,以上诸多主客观元素的影响,进而导致了人机环境交互系统异常复杂和非常的不确定。所以对人机环境交互系统的研究不应仅仅包含科学的范式,如实验、理论、模拟、大数据,还应涉及到人文艺术的多种方法,如直观、揣测、思辨、风格、图像、情境等,在许多状况下还应与哲学宗教的多种进路相关联,如现象、具身、分析、理解与信仰,等等。

在充满变数的人机环境交互系统中,存在的逻辑不是主客观的必然性和确定性,而是与各种可能性保持互动的同步性,是一种得“意”忘“形”的见招拆招和随机应变能力。这种思维和能力可能更适合复杂的人类各种艺术过程。凡此种种,恰恰是人工智能所欠缺的地方。

人机之间的不同之处

人与机相比,人的语言或信息组块能力强,具有有限记忆和理性;机器对于语言或信息组块能力弱,具有无限记忆和理性,其语言(程序)运行和自我监督机制的同时实现应是保障机器可靠性的基本原则。人可以在使用母语时以不考虑语法的方式进行交流,并且在很多情境下可以感知语言、图画、音乐的多义性,如人的听觉、视觉、触觉等具有辨别性的同时还具有情感性,常常能够知觉到只可意会不可言传的信息或概念(如对哲学这种很难通过学习得到学问的思考)。机器尽管可以下棋、回答问题,但对跨领域情境的随机应变能力很弱,对彼此矛盾或含糊不清的信息不能有效反应(缺少必要的竞争冒险选择机制),主次不分,综合辨析识别能力不足,不会使用归纳推理演绎等方法形成概念或提出新概念,更奢谈产生形而上学的理论形式。

人与机器在语言及信息的处理差异方面,主要体现在能否把表面上无关之事物相关在一起的能力。尽管大数据时代可能会有所变化,但对机器而言,抽象表征的提炼亦即基于规则条件及概率统计的决策方式与基于情感感动及顿悟冥想的判断(人类特有的)机理之间的鸿沟依然存在。

人工智能与哲学

人类文明实际上是一个认知的体现,无论是最早的美索不达米亚文明(距今6000多年),还是四大文明之后日新月异的以西方为代表的现代科技力量,其原点都可以落实到认知这个领域上。历史学家认为:以古希腊文化为驱动力的现代西方文明来源于古巴比伦和古埃及,其本质反应的是人与物(客观对象)之间的关系;而古印度所表征的文明中常常蕴含着人与神之间的信念;排名最后的古代中国文明是四大古文明中唯一较为完整地绵延至今的文化脉搏,其核心之道理反映的是人与人、人与环境之间的沟通交流(这也许正是中华文明之所以持续的重要原因吧)。纵观这些人、机(物)、环境之间系统交互的过程中,认知数据的产生、流通、处理、变异、卷曲、放大、衰减、消逝无时无刻不在进行着……

有人说人工智能是哲学问题。这句话有一定的道理,因为“我们是否能在计算机上完整地实现人类智能”,这个命题是一个哲学问题。康德认为哲学需要回答三个问题:我能知道什么?我应该做什么?我可以期待什么?分别对应着认识、道德、信仰。哲学不是要追究“什么是什么”,而是追求为什么“是”和如何“是”的问题。自2013年10月回国后,笔者一直在思考人机交互的本质问题,偶然与朋友交谈时聊及“共在”(Being together)一词,顿感很是恰当,试想,当今乃至可见的未来,人机之间的关系应该不是取代而是共存吧:相互按力分配、相互取长补短,共同进步,相互激发唤醒,有科有幻,有情有义,相得益彰……非常巧合的是,2014年以来,机器学习、互联网、机器人、人工智能等领域的发展也相当迅速,深度学习、类脑计算、情景感知一时间成了关键词,成了时髦语,但细细品来,其核心实质都不过是解释与建构的问题,形而上后竟会变成高大上的哲学问题。

其实哲学与科学、宗教一样,都是一个人为了能够获得理解而必须相信(除非你相信你不应当理解)的过程,这不是盲从,而是一种先信仰后理解的先验!比如,在科学中,物理学研究世界是什么样的(解释世界),计算机(数学)研究怎么造一个世界(建构世界),在这两者之间若没有相信、信任、信仰等先于理解而存在,恐怕是难以坚持进行下去的,毕竟在伸手不见五指的黑夜中,人是很难自行产生前进动力的(如一个没有利润的环境常常少见商人身影一般)。而信仰是一种赞同的思考,常常是一种非理性的激情、冲动情感,通过非理性而达到理性(通情达理),这不能不说是一个有趣的悖论!或许,这同时也是无中生有的禅理(以情化理)吧!

实际上,目前以符号表征、计算为代表的计算机虚拟建构体系是很难逼真反映以物理、生理、心理等理论解释真实世界的(数学本身并不完备),而认知科学的及时出现不自觉地把各“理”(物理、生理、心理)解释与各“机”(计算机、飞机、拖拉机)建构之间对立统一了起来,围绕是(Being)、应(Should)、要(Want)、能(Can)、变(Change)等节点展开融合进而形成一套新的人机环境系统交互体系。

有时候,世界是确定的,不确定的是我们自己,面对相同的文字、音乐、视频等情境事物,我们常常会随心情的不同而产生不同的觉察和理解,境随心转。有时候,世界是不确定的,确定的反而是我们自己,面对不同的文字、音乐、视频等情境事物,我们却能够处变不变而产生恒定表征,形成概念,心随境转。不管怎样,世界包括我们自己是由易、不易、简易、迁易、无易、有易、一易、多易……等诸多演化过程构成的,在这些纷繁复杂的变化中,都需要一种或多种参考框架体系协调其中的各种矛盾、悖论,而若追溯到这些框架体系的起源,应该就是人机环境之间的交互作用。或许,最好的智慧/智能真的就隐藏在这些交互的自相矛盾之中?!若果真如此,那又该如何破译呢?

哲学意义上的“我”也许就是人类研究的坐标原点或出发点,“我是谁”“我从哪里来”“要到那里去”这些问题也许就是人工智能研究的关键瓶颈?!

结束语

人工智能,尤其未来的强人工智能很可能是一种集科学技术、人文艺术、哲学宗教为一体的“有机化合物”,是各种“有限理性”与“有限感性”相互叠加和往返激荡的结果,而不仅仅是科学意义上的自然秩序之原理。它既包含了像科学技术那样只服从理性本身而不屈从于任何权威的确定性知识(答案)的东西,又包含着诸如人文艺术以及哲学、宗教等一些迄今仍为确定性的知识所不能肯定的思考。它不但关注着人机环境系统中的大数据挖掘,而且对涉及“蝴蝶效应”的临界小数据也极为敏感;它不但涉及计算、感知和认知等客观过程,而且还对算计、动机与猜测等主观过程颇为青睐;它不但与系统论、控制论和信息论等“老三论”相关,更与耗散结构论、协同论、突变论等“新三论”相联。它是整体与局部之间开环、闭环、自上而下、自下而上交叉融合的过程,是通过无关—弱相关—相关—强相关及其逆过程的混关联变换。

篇9

与传统的机械工程相比,机械电子工程已经超越了单一的学科,显而易见,机械电子工程是一个交叉学科,它充分的融合机械技术与信息技术,这就要求其在进行设计的过程之中必须充分考虑和应用自己的设计方法,在实际的设计过程之中,设计人员往往采用自上而下的设计方法,这种设计方法是机械电子工程设计之有的方法。

1.2产品上的差异

机械电子工程的另一个特点就是其产品上的与众不同,与一般的产品不同,机械电子产品的结构看似简单,但是在实际的设计与开发过程之中却融入了很多先进的技术与理念,这就远远的超越了传统的机械,这就是产品的外观更加的轻盈小巧,同时可以实现更加的智能化与现代化,是生产力飞跃的具体体现。

2.机械电子工程的发展过程

前文已经讲过,机械电子工程并不是一个简单的孤立学科,它是一个涉及机械与信息技术的交叉学科,又受到人工智能理念的影响,因此是一个典型的交叉学科。正是由于该学科的复杂性造成该学科在形成的过程之中并不是一蹴而就的,相反,该学科在形成的过程之中经过了很多阶段,经过相关的发展才最终形成现阶段的机械电子工程:

2.1机械电子工程学的开端

机械电子工程学的起步阶段是传统的手工生产,在这个阶段,机械电子工程学的发展十分的缓慢,这是由于此社会的平均劳动生产率相对较为低下,劳动力资源相对也较为匮乏,生产力的发展与进步比较缓慢,但是在一次次的尝试之中,机械电子工程还是逐步的发展起来了。

2.2机械电子工程学的高速发展阶段

机械电子工程学的高速发展阶段主要是流水线生产线的成功应用,这一时期的生产过程已经具有了相应的标准,在很大程度上促进了生产力的发展与进步,并不断的拓展机械电子工程产品的种类,逐步满足社会的发展与需求。

2.3机械电子工程的成熟阶段

进入21世纪,机械电子工程逐步走入其成熟阶段,逐步的形成了其特有的生产体系与发展体系,并实现了与现代信息技术与人工智能技术的完美融合,进入了现代机械电子工程的成熟阶段,不断的促进现代生产的发展与社会的进步。

3.人工智能的发展史

3.1萌芽阶段

人工智能的萌芽阶段起源于法国,当时法国科学家首先研制出了第一部计算器,从此世界开始了人工智能的研究之路,直至冯诺依曼发明第一台计算机。人工智能在其萌芽阶段和其他技术一样,发展打偶较为缓慢,但是却为后来的发展积累了丰富的经验,为之后的发展奠定了坚实的基础。

3.2第一个发展阶段

1956年美国人第一次提出“人工智能”的命题,并进行了相关的研究,这是引起人工智能第一发展高峰期的标志。这一阶段的人工智能属于较为简单的发展阶段,主要针对的的任务是:博弈、计算以及证明等任务。在这一阶段的确取得了一定的成就,这一阶段的主要贡献是大大的解放了人们的思想,使人们认识并了解了人工智能的可行性,对人工智能后期的发展起到了巨大的促进作用。

3.3第二个发展阶段

1977年全球召开了第五届人工智能会议,这是人工智能发展的第二个阶段的开始,由此之后,人们认识到知识工程对于人工智能领域的重要意义与价值,并不断的进行相关的发展与研究,促使人工智能与实际生产相结合,逐步的推进了人工智能的快速发展与进步。也正是在这个阶段,人工智能获得了巨大的飞跃,并表现出广阔的市场前景,在不确定推理、分布式人工智能、常识性知识表示方式等关键性技术问题和专家系统、计算机视觉、自然语言理解、智能机器人等实际应用问题上取得了长足的发展。

4.机械电子工程与人工智能的关系

机械电子系统具有不稳定性,这就使得机械电子系统在输入与输出关系的处理上比较困难。推导数学方程的方、建设规则库的方法以及学习并生成知识的传统方法,虽然在解析数学方面具有精密性,但是这些传统的方法还只能适用于一些相对简单的系统。然而现代社会所需求的系统是纷繁复杂的,往往会需要一个系统能够处理多种信息类型。人工智能建立系统所采取的方法中,主要使用的是神经网络系统和模糊推理系统。神经网络系统能够实现对人脑结构的模拟人,能够分析数字信号并给出参考数值。而模糊推理系统则是通过模拟人脑的功能,来实现对语言信号的有效分析。在处理输入输出的关系上,这两种方法既有共同之处,也存在各自的差异性。神经网络系统在信息的储存上是采用分布式的方式,而模糊推理系统则采用规则方式实现信息的储存。神经网络系统输入时由于每个神经元之间都有固定联系所以计算量一般都很大,而模糊推理系统的连接是不固定的,所以其计算量相对较小。人工智能系统的建立于发展在很大程度上促进了现代机械电子工程发展与进步。在实际的机械电子工程的设计工作之中,我们必须依靠相应的人工智能技术植入,只有这样才能更好的促进机械电子工程的发展,与此同时最大限度的促进人工智能功能的实现。很显然这个过程相互促进的过程,只有在发展之中充分的考虑两只之间的相互结合,不断的开拓出全新的技术,促进两者之间的更好的融合才能不断的促进两者的共同发展,不断的促进其进步,实现机械电子工程的不断发展,推进人工智能的持续进步。

篇10

一.人工智能的背景

人工智能是计算机科学的分支,它企图了解智能的实质,并研制出一种新型的以人类思维相似的方式做出相应反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能的思想萌芽最早可以追溯到十七世纪的巴斯卡和莱布尼茨。十九世纪,英国数学家布尔和摩尔根提出了“思维定律”,这些可谓是人工智能的开端。(1)50年代至70年代,人工智能相继出现了一批显著的成果,这一阶段的特点是重视问题求解的方法,忽视知识重要性。(2)随着第五代计算机的研制进入了80年代,人工智能得到迅猛发展。它的研制形成了一股研究人工智能的热潮。(3)90年代,由于国际互连网的技术发展,将人工智能更面向实用。研究人工智能出现新的。

二.人工智能的发展给人类带来伦理问题

(1)人工智能的情感问题。情感问题是千百年来人们一直在谈论的话题。明斯基认为,通过把我们的身体部分看做是大脑可以使用的资源,就可以改变它们的精神状态。因此,现在人工智能界的一种观点认为情感是一种特别的思维方式,我们可以利用它来增加我们的机智。智能机器人毕竟是一个赋予一种人类情感程序的机器,实质上还是没有人类的意识,只有固定的程序。

(2)人工智能机器的责任问题。人类不断向前发展,社会不断进步,人类把人工智能机器研制出来,赋予一定的程序,帮助老人,照顾小孩等;爱,不仅是男女之间的爱,也有父母对子女,这种爱是相互的。人们要面对智能机器的情感控制,我们不能把它视为一台机器,应该视为人类其中的一员,他们是一个种族,我们要对研制出来的人工智能机器负责。智能机器赋予人类的情感,我们也要给予同等的情感。我们不仅要研制智能机器,我们也要爱护和保护他们。

三.人工智能的问题对策

(1)人工智能情感问题研究。我们可以看出人工智能的机器情感是一个极其复杂的问题,这不仅涉及到人工智能的技术层面,同时情感是一种特殊的思维方式,机器是同样可以具有情感的。人类可能赋予人工智能一定的情感程序,我们要把人工智能的看成一类种族,让人工智能与我们共同创建美好的大家庭。

(2)人工智能的责任问题研究。随着人类社会的不断发展和进步,人工智能技术研究将成为人类不可避免,人类研究人工智能不仅会给人类带来帮助,也会给人们的带来一些困惑。我们在研究人工智能机器要考虑到,智能机器发展到一定程度的时,智能机器可以自己转变程序,人类要研究一种机器人的法律规范,也要赋予研究机器人的科学家一定的法律法规。

四.人工智能的影响

(1)人工智能带来负面影响。随着现代科学技术的发展,人工智能给人类带来帮助,也给人们带来了一些问题,像气候变暖,生物物种的灭绝,新型细菌的出现等。

(2)研究人工智能涉及的学科领域。人工智能是研究使计算机来模拟人的某些思维过程的智能行为学科,主要包括如下领域:专家系统、机器学习能力、模式识别、人工神经网络。在智能领域里最关键的问题之一,就是机器学习的问题。一旦机器有了学习能力,人类的未来发展难以预料!

(3)人工智能的积极影响及美好前景。人工智能的发展还没有到达一定水平,人工智能机器就可以和人做朋友,可以作为家里的一份子出现,进入人们的生活。我们在未来要研究人工智能的发展,也要研究人工智能出现以后所带来的问题,把人工智能的优势发挥的更好,给人类带来更美好的未来。

篇11

两组80例平均年龄(49.83±6.28)岁;病程最短者2个月,最长者7年,平均病程(3±1.68)年。两组患者年龄、性别、病程等资料经统计学处理,无显著性差异(P>0.05),具有可比性。

1.2西医诊断标准参照1992-06安徽太平《中华内科杂志》编委会肾脏病专业组制定的诊断和分期标准[2]。80ml/min>内生肌酐清除率(Ccr)>10ml/min;133μmol/L<血肌酐(Scr)<707μmol/L。有慢性肾脏病史,或累及肾脏的系统性疾病病史者。

1.3中医辨证分型及疗效标准参考1993年的《中药新药临床研究指导原则》[3]中CRF临床分型。本虚证:脾肾气虚型、气阴两虚型、脾肾阳虚型、肝肾阴虚型、阴阳两虚型。标实证:湿热型、湿浊型、血淤型、湿热挟淤型、其他型。疗效标准也参考该文献。

1.4辨象标准辨象标准参照《中国医学百科全书》朝医学[4]卷中辨象标准,均属“肺小肝大”者。

2方法

2.1实验室指标及方法①血常规及离子:红细胞(RBC)、血红蛋白(Hb)。②肾功能:Scr,BUN,Ccr。

2.2统计学方法数据均以±s表示,SPSS11.0软件统计,采用单因素方差分析组间比较。

2.3治疗方法治疗组48例太阴人组用太阴化浊汤加减:薏苡仁20g,干栗15g,黄芩15g,桔梗10g,莱菔子20g,生大黄10g,石菖蒲10g,杏仁15g,白头翁15g,泽兰20g,地龙15g;如浮肿甚加蛴螬15g,浮萍15g;若尿浊(蛋白尿)加鹿角霜15g,佩兰10g;血压高加天麻15g,15g。对照组32例,用由广州康臣药业生产的尿毒清颗粒,5g/袋,1袋/次,服用4次/d,服用1个月。对照组与治疗组48例患者进行相关比较,各以1个月为1个疗程,观察1个疗程。

3结果

3.1有效率与症状出现规律经观察太阴人在四象人CRF患者中,所占人数为47.52%,比例最多,治疗组总有效率78.2%,明显优于对照组的47.8%,而85%的太阴人患者多以继发性发病为多。在糖尿病、高血压病、高脂血症等疾病引起肾脏负荷过重而引起该病,其发病证型以中医证型的气阴两虚型、肝肾阴虚型、湿浊型、湿热挟淤型者为多。

3.2两组疗效比较结果见表1。经观察治疗组能有效改善贫血等症状,且有显著控制肾功衰的疗效。结果见表2。表1两组治疗前后血常规、离子比较(略)表2两组治疗前后肾功能比较(略)

4讨论

CRF病情危重,临床表现极为复杂,属中医的“关格”“癃闭”“肾风”“水毒证”“肾劳”等范畴,其病机错综复杂,有正虚邪实、寒热错杂、虚实互见等。肾小球硬化的病机目前有虚、淤、湿、浊、毒、痰等看法[5]。体质辨治CRF也追随以上理论。朝医体质理论发端于《灵枢·通天》七十二篇中的五太人论,但舍弃了阴阳和平体质之人,仅保留了其余四种体质。认为太、少阴阳体质不同其体内的气血运行亦不同,引起本病也有相应的规律。太阴人“过偏于阴之人”“肺小肝大”。肺主呼吸、主气、主肃降、通调水道,肺小则肺气推动血液、津液运行不畅,又肃降不利,治节失度,故生淤酿痰,痰淤互结生浊气,痰浊壅遏于里。肝藏血,主疏泄喜条达,肝大则其功能相对亢进,表现为肝实病变,故肝失疏泄、肝络瘀阻,最终致“血浊气涩”。血浊与气涩互为因果,二者相参恶化脏局,促使浊邪壅遏于内、充斥三焦。三焦决渎失司,痰浊阻滞肾络,气化不利故成本病。故其病初起多以高血压病、高脂血症、冠心病、糖尿病等以肝实、邪浊的病变为早期原发病,并以实证为主。到代偿期、失代偿期时多伴有神疲乏力、浮肿、呕吐等临床表现,所以此时也常被确认该病。

本方是太阴人清肺泻肝汤化裁,顾名思义清泻肝实,降利肺气;生大黄、薏苡仁、白头翁、黄芩以通腹泻浊,桔梗、杏仁、莱菔子、石菖蒲降气化痰,泽兰、地龙活肾络的功效。完全针对太阴人体质以及CRF病机而设,与中医理论的专注于病位在肾的治法有所出入,其辨体质的治疗特点亦在此。此外太阴人“肺小肝大”,故平时注重调补肺脏,谨防感冒的发生;积极治疗太阴人易感之疾高血压、高血脂、高血糖、高胰岛素血症等疾病,防止该病引起对肾单位的损伤。通过以上对太阴人CRF的治疗,可看出浊毒淤阻是首要病机,而且与其“血浊气涩”体质的病理特点有紧密相关。所以在治疗上我们既要辨其病、又要辨证、更要辨体质,这样才可做到“审机论治”“辨质论治”和“辨病论治”3者有机地结合起来,并能获得最佳疗效。

【参考文献】

[1]匡调元.匡调元医论[M].上海:上海中医药大学出版社,2004:113.

[2]王海燕,郑法雷,刘上春,等.原发性肾小球疾病分型与治疗及诊断标准专题座谈会纪要·慢性肾衰诊断标准及分期[S].中华内科杂志,1993,32(2):131.

[3]中华人民共和国卫生部.中药新药临床指导原则,第1辑[S].1993:167.

[4]中国医学百科全书编辑委员会.中国医学百科全书(朝医学)[M].上海:上海科学技术出版社,1992:4.