时间:2023-03-08 15:36:45
序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇小学数学教学案例范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!
学生被分为6人一小组,每人手上有6根小棒。
A教学:
师:大家手上都有6根小棒。平均分成三份,每份是多少呢?
生动手操作。
师:好!把刚才操作的过程在小组中交流一下。
B教学:
师:大家手上都有一些小棒,试着按要求进行平均分操作。要求是:平均分成1份,2份,3份,4份,5份,6份,并且不能损坏小棒。看那组最迅速。
学生开始分。有的很快地分好,有的开始小声议论。
师:有困难吗?
生1:平均分成4份不好分。
生2:平均分成5份也不好分。
师:是啊!有的多,有的少,不是平均分。最好怎么办呢?
(生……)
师:好!同组内的小棒可以相互借调。再试试看。
(生活动。)
师:哪个小组愿意来交流一下,你们的4份是怎么平均分的?
分析:学生是由于需要而主动地合作交流,还是被老师安排去合作交流,两种心态会产生不同的效果。我感觉让问题更具有思考性和探索性才能激发学生合作交流的积极主动性。数学教学中的合作交流不能等同于日常随意性的谈话,它应具有一定的学习目标的指向性,是为解决某个具体的问题而进行的合作与交流。因此,教学中要不断地让学生产生思维的困惑,让他们在思维的压力下,主动地想到与别人的合作与交流。案例教学中,把6根小棒平均分成3份,只有1种分法,让他们交流什么呢?只会不断地重复。而要把6根小棒平均分成4份、5份,却是个伤脑筋的事。老师建议重新调剂,怎样调剂呢?小组成员之间必然要交流和合作。特别是平均分成4份,需要另一个人全部拿出,或者有4人拿出一根,剩下一位同学拿出2根,其间的讨论一定会热烈。“方便别人,也就方便了自己”,在这里不是很好地得到了体现吗?!
案例2:《角的初步认识》教学片段
A教学:
师:同学们,大家知道,这是什么图形吗?
生:是角。
师:真好!在生活中哪些地方有角呢?
生:……
B教学:
师:同学们,咱们今天一起研究角的有关知识。我知道,几天前,每个小组都进行了有关角的资料的收集,并进行了一定的整理。现在用你们喜爱的方式来交流一下,好吗?
各个小组代表开始交流。
分析:一节课中究竟安排几次小组学习为宜呢?我们经常这样讨论着。细细分析这种讨论,它其实是把合作交流局限在教学环节之上。试想,一节课都让学生在小组内合作交流,又有何妨呢?下节课再整理归纳就是了!打破知识的分割,建立一种大的课程观和教学观,我们完全可以在课堂内探索更大时空的合作与交流。同时,合作交流不能仅仅限于课内,学习小组不能是课内象集体,课外如“散兵”。课外的合作交流,更能发挥学生的积极性,更能调动他们的集体荣誉感。让我们从整体着眼,从形成氛围和培养习惯入手,积极地将学生学习数学的过程变成一种师生不断“对话”与“协作”的过程,让合作交流的学习方式发挥出它更大的效应。
案例3:《退位减法》复习课
一位教师上“退位减法”的复习课时,创设了这样的情景,让人体会颇深。
(1)直接出示了6道题目,其中2道退位题。请你看一看,你能不能一眼就看出哪些是退位的,哪些不是退位的。(培养学生对数学较为敏感的知觉能力就在这样简短的问话里得以深刻体现。)
(2)动笔做,互相检查。我们也来开个儿童医院,请你们把最容易得病的算式拿上来,我们一起来会诊,最后请学生们给得病的算式开个小处方。在这里老师提了个要求:请你用一句话来告诉病人应该注意什么。(改错题的呈现方式有很多,这里用的是“治病情境”。老师没有停留在热闹的场景中,而是专注于让学生总结错误的原因和改错的方法。
(3)自己出一道退位减法题给同桌做。
(4)老师出题:3000―( );再请每人写一道题。
……
分析:情境只有为教学服务、适合学生需要的时候才能叫做好情境,不能为教学服务的情境就是多余的。
1.创设的情境要充分考虑学生已有的知识和相应的经验
在创设的情境时,教师要充分考虑学生已有的知识和相应的经验,要了解学生已经掌握了什么,掌握的程度如何,他们生活在什么样的环境中,有什么样的生活经历,接触过什么事情等等。一个真实、源于学生已有生活经验和认知水平的教学情境,往往有利于调动学生的积极性,激发学生解决实际问题的能力。
2.创设的情境要从教学目标出发,不能脱离学科因素
情境的创设要紧密围绕教学,服务于课程标准三个维度的要求。这要求教师一方面要从生活情境中及时提炼教学问题,切忌在情境中“流连往返”;另一方面不能“浅尝辄止”,把情境的创设作为课堂教学的“摆设”。
中图分类号:G623.5 文献标识码:B 文章编号:1672-1578(2013)12-0147-01
1.将生活融入数学,让学生体味数学乐趣
北师大版二年级下册"派车派车派车派车"的教学片断: (1)出示问题:假期里,我们班将组织25名优秀学生进行社会实践夏令营,学校安排面包车、小轿车两种车接送。其中面包车每辆限乘8人,小轿车每辆限乘3人。假如你是老师,你将如何派车? (2)学生独立思考后并在小组内交流。 (3)学生汇报: 生1:派2辆面包车和3辆小轿车,算式:2×8=16(人) 3×3=9(人)。 师:掌声鼓励! 生2:派4辆面包车,留7个坐位放行李。算式:8×4-7=25(人) 生3:派5辆面包车。 师:说说你的理由。 生3:每辆面包车坐5人,留3个坐位放行李,算式:5×5=25(人) 师:也可以! 生4:派6辆面包车,其中5辆面包车每辆坐4人,一辆坐5人,空位放行李。
学生海阔天空的答,而教师不管学生如何回答,都一一加以肯定,以示教学的民主,体现"鼓励解决问题策略的多样化"。待过了20分钟,学生说出了11种派车方案(其中有8种方案空位超过一辆车的坐位)时,教师小结并布置了练习:同学们真能干,想出了这么多的方案,每种方案都有自己的特色。如果增加4位教师,共有29人,你又会怎样派车呢?…
案例分析 (从解题策略多样化要注意的有关问题的角度分析):
解决问题策略的多样化是对几十个人去 ,并不是每一个学生都要求能用不同的方法去解决同一个数学问题 。 因此 ., 对于学生个体来说, 不同学习能力的学生应有不同的要求, 学习能力低的学生只要求能用一种方法解决问题, 学习能力高的 学生要求用不同方法解决同一问题 要求用不同方法解决同一问题。 过于追求算法多样化, 往往会造成学生对每种算法的理解不够深入, 思维仅仅停留在横向的比较层面上。 而现在一般强调的 要优化, 实质是为了使学生的思维能够纵向地、 深入地发展, 同时算法的优化也有利于更好完成一堂课的教学目标, 课如本课 "寻求租寻 的多种方案 "的 目标。 因为优化的方法往往是已经公认的、 适合大多数学生掌握的、 有推广和使用价值的方法, 学生只有在掌握优化方法的前提下 , 才 有可能去完成熟练的技能 。
【案例】
《圆的周长》公开课片断:
师:圆周长与什么有关?
生:(各自发表意见,最后统一认识,圆直径与圆周长的关系很密切。)
师:我们来研究圆周长与圆直径有什么关系?由老师提供圆的模型。同学们以四人小组为单位,先讨论一下,你们计划怎样测量圆的周长和直径?
生:四人小组讨论测量计划。
师:讨论好的小组上来领圆的模型。(课件显示下面的空白表)
生:进行测量。
师:请各小组派代表把测量结果告诉大家。
生汇报测量结果,师记录:
师:观察同学们的测量数据,思考圆周长和圆直径有什么关系?
生①:圆周长是圆直径的3倍以上。(教师微笑着点头)
生②:圆周长是圆直径的3.14倍。(教师点头,但显得有些尴尬)
生③:圆周长是圆直径的3至4倍。(教师再次微笑着点头)
师:数学家经过许多次的实验发现,任何一个圆的周长都是它自己直径的3倍多一点,而且测量的越科学这个倍数就越精确,我国很早就计算出圆周长是圆直径的3.1415926倍。
【分析】
在这个教学片断中,有两个细节:
细节①:某小组测量圆周长,得到的数据是6.28cm。
细节②:在“观察测量数据,思考圆周长和圆直径有什么关系?”时,生②回答“圆周长是圆直径的3.14倍”。
细节①,学生用尺测量圆周长时,以厘米为单位能精确到百分位吗?且百分位上的数恰好是8,使圆周长与圆直径的倍数暗合了∏的近似值3.14。如果圆周长6.28厘米是用3.14×2倒推出来的,那学生就没有经历测量数据的数学过程,而且教师还默许了学生对数学探究活动弄虚作假的态度;细节②,里面蕴含着从特殊到一般的不完全归纳的数学思想,学生②就不可能感悟到这一数学思想。
以上这样的情境我们很多教师或许都曾经历过。自己“精心”预设的教学过程,有些同学却“不屑一顾”,而且非常自豪、迫不及待地表达出了最终结果。遭遇这样的意外,使我们的教师有些措手不及,一般都会采用“忽略”、“继续”的办法。之所以采用“忽略”“继续”的办法,我想原因有三:第一,学生测量的数据和回答的答案是3.14,并没有明显的错误,只是它太“完美”、太“准确”,令人有些难以相信,所以可以忽略。第二,教学要面向全体学生,对于不了解∏的同学,需继续学习,使他们对∏的产生有一个完整的认识过程,所以要继续。第三,面对课堂上突发的意外,当没有好的策略,而且还想尽力完成预设的教学计划(自己精心预设的教学计划不能完成,总是舍不得),所以也只能采用“忽略”“继续”的办法。
【思考】
教师充分准备、精心预设的教学过程在实施时被学生“破坏”或“打乱”是再所难免的,而且在新课程改革的过程中这种现象有可能会越来越多。一方面,新课程改革倡导师生平等、教学民主,要给学生创造充分发挥和施展的空间,这使得教学过程更加开放,更具有不可预测性;另一方面,我们学生获取知识的渠道更加丰富,家长对子女的培养更加重视。我们学生到底掌握了哪些知识,到了哪个思维水平,教师很难准确地预见到。
【对策】
虽然课堂上的“意外”很难预见,但倘若发生了,又必须很好的解决,那当我们的“预设”在课堂上遭遇“意外”时该怎么办呢?当“意外”发生时,不要怕、不要躲,要积极、勇敢地面对,要利用好“意外”这种特殊的教学资源,把握好处理教学“意外”的原则。
1.积极面对原则
积极面对原则是指当教师的提前“预设”遭到“意外”发生时,教师首先要在主观上要积极面对,主动处理“意外”发生,不能消极的听而不闻、视而不见或用一些套话敷衍,甚至任由其发展,心中要有这样一个观念,就是每位学生都渴望得到教师的重视,都得到教师的关心,教师在掌握好这些信息后,就要根据学生的实际情况,结合教学内容调整教学方案,重新布置,从而制定促进学生在数学方面获得发展最有效的策略。
2.重新审视原则
重新审视原则是指根据发生的“意外”,从头开始,从头做起,重新审视我们在课前所做的预设,看教学目标是否准确,教学方法是否恰当,权衡“意外”发生前后轻重,根据审视后的结果重新做出调整。对个体“意外”的发生,教师就需要权衡轻重,做出选择和调整,因为在课堂上对个体“意外”的处理往往会影响预定的教学进程,甚至不能完成预定的教学目标。
3.促进发展原则
促进发展原则是指教师在处理遭到“意外”的时候,要以促进学生的全面发展为原则。根据课堂反馈的信息,积极调整甚至改变那些不利于促进学生全面发展的学习内容、学习目标和学习方法,进而改用能够促使学生发展的内容、目标和方式方法,总之,一切都要按照有利于促进学生的发展来处理。
小学数学虽然理论性很强,但它来源于生活,又应用于生活,小学数学教师必须坚持理论联系的教学原则,帮助学生更深入地了解数学,掌握数学知识。教学实践表明:传统的强行将知识灌输给学生的教学方式已无法满足素质教育的要求,相比之下,案例教学法更具实践性,对学生创新思维和逻辑思维的培养都有极大的促进作用,应大力倡导,并积极践行。
一、案例教学法的要求及特征
案例教学法可以简单地理解为教师借助具体问题情境引导学生,让学生在对案例进行讨论的过程中成长,提高知识水平和学习能力,它离不开一个合理的案例,一个明确案例教学内涵和方法的导师,以及学生在案例讨论过程中的收获。也就是说,案例教学不强求学生解决问题,而是需要学生从学习过程中掌握一些分析和探究问题的方法,在思维碰撞中升华对知识的领悟。教师在选材和实施案例教学法时要注意以下几点:(1)有明确的教学目标。只有目标明确,教师才能挑选出适合的教学案例,就像医生的病例、律师的判例,有很强的针对性。(2)真材,即案例内容真实。案例要求真实,切忌胡编乱造,只有案例真实,学生才能有设身处地的感觉,记忆深刻,把案例中的问题当成实际生活中的问题去解决,总结归纳出一般性的规律和实践原理,在日后再次遇到同类问题时,便于回忆起并使用这些“原理”。(3)学生主体。教师是课堂的组织者和引导者,在精选案例的工作完成后,应该让学生独立阅读、分析,然后小组讨论,过程中,加深对知识的理解。在这个过程中学生是课堂的主人,学习的主体。在讨论完成后教师可以适当进行总结和评价,但前提是必须留给学生解题的空间,尊重学生的想法。
二、案例教学法在小学数学教学中的具体实践
案例教学法归根究底是一种教学方式,与一切教学方法的目的一样――帮助学生掌握知识。案例教学法的具体实践方法如下。
1.明确案例内涵。课堂上所使用的案例是真实的,它是与教学内容密切相关材料的一种课堂表述方式。换言之,它是一种实际问题的情景模式,重要的是它自身具有很高的教研价值,可以帮助学生理解问题。教学案例是描述一个完整故事的问题情境,必须真实;要叙述清晰,研究价值高,具有代表性;可以起到启发学生的作用,使学生再次遇到同类型问题时能轻易求出答案;要与时俱进,因为新事物才有足够的吸引力,才能激发学生的学习动机。
2.丰富案例内容。教学案例可以有很多种类,但万变不离其宗,它无法脱离生活实际。教师可以选择校内外发生的事情作为教学案例,也可以选择发生在学生之间、师生之间的事作为教学案例。比如在讲“小数的加减法”时,我设置了案例:老师昨天在书店给儿子买了一套《西游记》,一共花了148元,还剩53元,老师一共带了多少钱呢?学生听到生活中熟悉的加减法题,轻松地演算,148+53=201(元),很快就得出了答案。我趁着学生热情高涨,又说道:那天老师家隔壁的王阿姨也给她女儿买了一本《白雪公主》,花了3.2元,一本《动物世界》,花了11.5元,大家知道王阿姨一共花了多少钱吗?在学生一脸疑惑之下,我鼓励他们勇敢尝试,列出等式,然后在课堂中巡回走了一圈视察学生的思考状况,最后一边列出等式:3.2+11.5=?11.5+3.2=?一边说:“这是我看到有些同学在稿纸上列出的等式,还有人列出不同的等式吗?”在看到学生一脸疑惑之后,我让他们看课本,学习小数加减法法则,这样的案例更有助于学生理解题意,列出等式。因为只有在学生理解了题意后,再教授他们解法,学生才能轻易地解决问题。总之,案例可以大到国家大事,也可以小到生活中不起眼的细节。对此,首先教师应该多关注生活,因为小学数学基础性强,生活化的问题更易于学生接受和理解,让学生认识到学习数学其实是为了解决实际问题。其次,教师应该拓展资料来源,因为多源头的信息可以为教师提供多样化的案例资料,不论二手资料还是自编资料都对教学工作十分有利。再次,充分利用信息技术。目前多媒体教学得到了广泛应用。教师完全可以借助多媒体跨越时间空间、化静为动的教学资源特点为学生呈现出更加丰富多彩的教学案例,这类案例是小学生特别感兴趣的。
3.逐步实施案例教学。案例教学是有序可循的,首先,教师要以学生认知程度为标准向学生清晰地呈现出案例,方式不限(文字、图片、音频、视频、情景演示等),避免学生难于理解案例的现象发生。其次,分析案例。形式主要是以激活学生思维活动、让学生在案例的分析过程中学会科学分析和解决问题为目的的小组合作、课堂讨论模式。最后,在学生掌握知识的基础上,教师应适当扩充知识,拓展学生认知范围,这样有利于学生学会并归纳出数学中规律性内容的能力,从思维迁移延伸至能力迁移。比如三年级下册第六单元《千米和吨》中“千米”这个知识点的教学目的是让学生理解一千米的概念,一千米的概念对小学生而言是十分抽象的,所以我借助了相应的案例。首先,我让学生估计学校门口距离某超市的这段路有多长,通过多媒体演示让学生初步感受到1000米其实是比较长的,然后展示操场的平面图,标明从沙坑到操场前端有100米,然后引导学生思考:几个100米是1000米?将这段距离来回走5次是多少米?接着通过学校周围的调查录像让学生直观地看看以学校为起点,走到哪里会有1000米,鼓励学生在课余时间自己走走看。这样循序渐进地深化知识,从抽象理论到具体实践,更有利于学生理解并掌握知识。学生从观察学习案例的过程中可以获得成就感,从而激发学习兴趣,此时教师再趁热打铁,鼓励学生用所学知识解决实际问题。
三、结语
教师必须意识到小学数学的基础性作用及它对小学生思维能力和数学素养提高的重要性。由于数学本身抽象,要求学生有一定的概括能力,但实际情况是很多学生认为数学理论难理解,学习起来很困难,枯燥乏味,对它根本不感兴趣。小学数学新课程标准规定:“课程内容的选择要贴近学生实际,有利于学生体验和理解、思考与探索。”在小学数学中实施案例教学是很有必要的,案例教学的生活化情节、真实性情节对小学生而言更具吸引力,学生会在自己感兴趣的学习模式(案例教学模式)下积极主动地开动脑筋、分析问题、合作探讨,进而在自身逻辑思维和创造性思维能力得到提高的同时回馈教师高质量、高效率的教学成果。
参考文献:
[1]戴昌虎.有关小学数学课堂中的“生本理念”[J].小学时代(教育研究),2010(05).
[2]刘素真.提高小学数学课堂教学有效性的思考[J].成功(教育),2011(09).
[3]牟利霞.小学数学课堂中的导课浅谈[J].科教新报(教育科研),2011(08).
中图分类号:G623.5 文献标识码:A 文章编号:1002-7661(2014)06-0042-02
小学数学具有理论性强、实践性强等特点,传统数学教学中往往注重数学的理论教学,而忽视了数学的实践性,因而在新时期数学教师应该将数学学科的理论和实践结合起来,从学生的角度出发,借助于案例教学方法来加深学生对数学知识的理解。
一、数学理论与实际相结合
在小学数学教学方面,传统的教学方式,过于偏重于数学理论知识的传授,使得学生不能将实际生活与数学知识相结合起来,一方面阻碍了学生对数学知识的理解,而另一方面数学知识用于指导生活的目的也不能完成。因而在进行数学教学时,教师应该注意将生活实际与数学知识结合起来,这样既能加深学生对数学知识的理解,同时在一定程度上还能够调动学生的学习兴趣,将小学生的注意力集中到数学课堂学习上。例如教师在进行人教版中除法知识教学时,应该首先让学生了解学法的目的,或是学法的作用,如学习了除法之后就可以应用除法来进行一些生活中的简单运算。比如有9个苹果要均匀分给三个小朋友,每个小朋友应该分几个苹果这样的问题。学生在了解了除法的用处之后,对除法学习的积极性也会随之提高,而在教材设计上,人教版中也大量运用了很多图片来解释除法的含义和学习意义,在第四册当中就有这样一道例题,问题是15个小朋友做游戏,要将其分为三组,那么每组有几个小朋友,也可以反过来问,每组有5个小朋友,那么15个小朋友可以被分为几组。通过这样的问题和情境图片的辅助可以帮助学生更快地理解问题,同时教师还可以让学生当堂进行实践,将15个学生分成三组,每组各5位学生,这样直接直观的演示能够将教材上的理论知识与实际更加紧密地结合起来,从而加深学生的印象。
二、案例在自主学习中的应用
传统的数学教学课堂,多是由教师主导,学生处在被动的接受位置,这样的课堂会让学生产生厌烦,同时在数学解题方法方面,传统的教学当中也多是由教师直接将解题方法传授给学生,学生被动接受来自老师的解题方法,缺少让学生进行自主探索和思考的过程,从而使学生丧失自主学习的能力,也会丧失对数学学习的兴趣,对于学生的未来发展具有阻碍作用。因而数学教师应该转变教学观念,重视学生自主学习意识,注重学生学习自主性的提高。例如同样在进行除法教学时,教师就可以采用自主学习的教学方法,提前为学生设置自主学习情境,然后在情境中运用数学问题来引导学生进行自主学习,最终完成教学任务。在学习整千、整百除法的学习时,教师就可以先向学生提问两位数的除法问题,例如9除以3是多少,学生能够很轻松地回答出来是3,然后再让学生想像一下,9除以3实际上就是将9平均分为三份,这时教师还可以让学生利用自己手头的火柴棍或是橡皮等等进行实际演示。在充分复习了前面简单的除法运算之后,教师可以逐渐加强难度,如果9扩大十倍之后,90除以3是多少,900除以3是多少,这样的问题,教师完全可以交给学生自己去探索和思考。学生在前面的复习当中已经了解了除法的本质,对于900除以3这样的问题,就会自觉将其转化成900平均分为3份,问每份是多少,这样学生就能够自己得出900除以3是300这样的结论来。通过自我探索和思考不仅加深了学生对问题的理解,而且还能够锻炼学生举一反三的思维能力。
三、增加学生自主研究空间
从小学高年级的教材中可以看出,在后期数学教学中对学生自主研究空间越来越重视,因而教师在研究数学教材时也应该注重研究空间或是学习空间,以提升学生的自主研究能力。例如在讲授三位数的乘法问题时,教师可以更多地鼓励学生自己进行研究,可以从二位数乘法中来获得经验,让学生利用二位数乘法中的相似方法来尝试解决三位数的乘法问题。例如求110乘以110时,教师可以引导学生先进行11乘以11的计算,然后用这一计算过程中用到的方法来计算110乘以110。通过这样的案例能够调动学生对自主进行研究学习的积极性,同时还能够提高学生的自主学习能力。对于学生经过努力思考没有得出正确答案的问题,教师则应该及时对其进行纠正,以帮助学生不断提高自身的解题能力。
中图分类号:G623.5 文献标识码:C DOI:10.3969/j.issn.1672-8181.2014.04.054
作为小学数学教学的一个重要组成部分,计算教学贯穿于整个小学阶段的数学教学之中,并且在学科教学中占有非常重要的地位。新一轮课程改革对小学数学计算教学进行了较大的调整,删除了“繁、难、偏、旧”的教学内容,加强口算,重视估算,强调“算用结合”,提倡算法多样化,注重发展学生的数感……从中我们不难看出,计算教学无疑站在了基础教育课程改革的风口浪尖。[1]可以说,计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。小学生的数学学习成绩很多是通过运算能力来体现的,而小学生的运算能力主要包括计算能力和解答应用题能力。由此,基于运算能力培养的计算教学就显得尤为重要。
国内目前有关于计算教学领域的研究主体作者群集于中小学一线教师,研究的内容大多涉及教学策略的提出以及如何培养学生计算能力等方面;而高等院校、科研机构的工作者对该领域的研究多涉及理论方面,例如对计算教学的价值取向研究等等。可借鉴的计算教学案例、教学设计等操作层面上的成果还不是很多。本文立足于国外计算教学具体案例的介绍,具有一定的直观性、实用性,希望能对一线教师的教学提供一定的参考。
1 国外小学数学计算教学案例介绍
本文选取了该系列教学案例中比较有代表性的几则。
案例1:
一年级:花园中心。
学习领域:语言,读写能力和沟通技巧。
口语能力:使用语言来创造和维持充满想象力的游戏并进行角色扮演。
运算能力:①会使用10以内的数字加减(如6+4)。
②解决涉及超过10的加减问题。
背景资料:作为“成长”主题的一部分,孩子们要了解更多关于园艺的知识。在角色扮演的环节他们选择了创建一个花园中心。
活动说明:要求孩子们对花园中心给予适当的改变,购买和出售一定价值的物品。然后开始调查运用债券10便士可以购买什么。
关键问题:
①用10便士,你能买什么?
②如果你有20便士,你能买什么?
③如果你要花8个便士买一个大耙,支付了10便士,你的钱数会有什么变化?
④如果你买了6便士的铲子,但你不得不花10便士,你还有什么可以买吗?
通过创设花园中心,可以使学生在扮演园丁的过程中对花园进行相应的管理,如购买基本工具等等,让学生在实践活动中,加深对货币认识,并把所学的知识运用到生活中去,在培养学生自理能力的同时,培养了学生应用数学知识、解决生活中实际问题的意识和能力。
案例2:
二年级:魔豆。
学习领域:①语言,读写能力和沟通技巧。
②对知识和世界的理解。
③口语能力,学会表达对一系列真实刺激和充满想象的故事感受。
运算能力:使用大脑中已有的有关于10以内的实例推导出其他的数字实例――加倍和减半运算(例如40+40)。
背景资料:这半学期的主题都是“生长”,向孩子们介绍《杰克与魔豆》[2]的故事,我们将种植豆类植物作为我们主题的一部分。
活动说明:通过上下文的故事设计一组数的问题。提问如果魔豆第一天长了10米,5天后魔豆的高度是多少?每天增加一倍呢?对理解能力不强的学生,问题被简化到1米。并提供给他们表格和图形来完成。
关键问题:
①2天后魔豆有多高?
②请问魔豆增长的高度每天都一样?
③5天后魔豆增长有多高?
通过情节生动的童话故事将学生的注意力牢牢吸引,然后引出关于魔豆豆茎长度的一系列数学问题,引导理解能力不强的学生将“第一天增长了10米换成第一天增长了一米”简化问题,并通过模型和图表的方式自己来体验“每天增加一倍”的真正含义――“豆茎每天增长的高度是前一天的两倍”,从而可以判断出“豆茎每天增长的高度不相同”这一结论,并在动手实践中理解倍数问题。
案例3:
四年级:塞文潮。
地理:①理解地理位置,环境和流程。
②学习者学习塞文潮的相关知识,并为想去参观的人制作一份旅游信息指南。
运算能力:①在24小时的数字时钟上会读取小时和分钟。
②使用已知表的事实查找零碎时间,例如20的1/6。
③使用日历计划事件。
背景资料:在地理课所学知识的基础上,学习者制作塞文潮的旅游指南。本指南将为人们提供潮波时间表,潮波的大小,踏浪的安全提示,在现场设施,每年参观的游客数量等。学习者将通过多种来源提供与塞文潮相关的信息。
活动说明:学习者在阅读和记录这些信息时要使用说明书并将回
一些数学基础问题。
关键问题:
①如果100个人中的1/2这个月来塞文潮冲浪,共有多少人来冲浪?
②如果72个人中的1/6乘坐公交车前往塞文潮,共有多少人乘坐公交车旅行?
③如果81个人中的1/9的参观者来自威尔士,有多少人来自威尔士参观?
④如果班里1/4的儿童(共28人)允许参观,有多少人能参加旅行?
⑤塞文潮本月最早什么时候开始?塞文潮将于本月什么时候结束?
⑥人们希望在19点之后冲浪,最早是什么时候?最晚呢?
⑦现在是什么时间?下一次塞文潮到来时是什么时间?
将识钟学习与学生熟悉的自然景观塞文潮相联系,并通过对相应时刻的学习介绍塞文潮相关景点的时刻,将旅游时间表与识钟教学巧妙结合,既了解了地理知识又将对时钟与分数的学习融会其中,让学生通过动手制作旅游指南将所学知识运用到实际生活中。
2 对我国小学数学教学案例设计的启示
2.1 案例的内容设计可以更为生活化,拉近学生与知识的距离
我国2001年颁布的《基础教育课程改革纲要(试行)》中明确提出,要“加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。”这从教学方面来看,就要求教师在案例设计的过程中多选取与学生生活贴近的例子,充分利用学生在日常生活中所已建立起来的知识和经验作为新的学习活动的良好基础。上述案例设计内容选择贴近学生生活,贯穿了地理、历史等知识于数学教学当中,无不与学生的生活息息相关。从这些内容展开去,无疑会调动学生的学习积极性,拉近学生与知识的距离。
2.2 案例的表现形式可以多样化,增强教学案例的趣味性
苏联教育家赞科夫也曾说过:“对所学知识内容的兴趣可能成为学习动机。”这表明,兴趣对一个人学习的重要意义。之于教学案例而言,是否有利于学生主动学习,应该是衡量其有效的重要标准之一。上述案例中,所选的都是与生活息息相关的内容情景为导入,对于这些鲜活的事件,以童话故事(如案例2:魔豆)或者介绍地理风景名胜(案例3:塞文潮)等丰富的形式展开教学,再辅之学生查找网上资料、动手制作、观察等丰富的方法,调动学生参与学习的热情,从而不仅学习到知识,同时在情感、态度和价值观方面得到收获。
2.3 案例设计应让学生在参与中生成并积累相对完整的数学活动经验
上述案例中创设的各种探究和操作活动,可以使学生在参与中生成并积累相对完整的数学活动经验。通过学生自作,自我创新的实践活动,获得直接经验。学生以小组的形式在参与活动,在活动中经历了发现、提出、分析、解决数学问题、交流、讨论、总结、应用等环节,并且在每一环节既有外显层面的行为操作活动,也有思维层面的操作活动,有助于促进学生积累完整的数学活动经验。
参考文献:
[1]窦平.小学计算教学的困境与解径[J].2012.
[2]Jack and the Beanstalk[Z].
[3]http://.uk/SiteCollectionDocuments/Learning/Your%20Professional%20Development/Induction%20EPD/Induction/Training/Numeracy/Exemplifaction%20Materials%20-%20KS2.pdf[DB/OL].
[4]中华人民共和国教育部.义务教育数学课程标准(2011年版)[S].北京师范大学出版社,2012.
[5]张新颜.英国小学计算教学的成功经验及启示[J].上海教育科研,2013,(4).
[6]王希荣.结合案例谈谈如何发挥学生的主体作用[J].新乡教育学院报,2004,(12).
[7]教育部.基础教育课程改革纲要(试行)[Z].2001.
[8]吴海青.中美小学数学计算教学比较――美国纽约州中小学考察录[J].世界教育信息,2011,(11).
案例一 分数的运算
在小学数学中,分数的运算教学是一个有难点的课题。
首先,对于同分母的分数相加减的运算,学生们稍加练习基本上是可以掌握的。到了异分母部分,出问题的地方就会多起来。究其原因,实际上是同分母分数相加减的规则简单,容易记忆和操作,而以分母的分数相加减则要麻烦些。问题的实质在于学生们没有真正理解分数以及同分母的分数相加减的意义。
此时,教师应当用一些问题来引领学生思考。
教师可以问一个简单的问题:回忆一下,是什么意思?
引导学生回答:可以理解为是3个的和。
教师再问:加上为什么是呢?我们想一下,3个苹果加上2个苹果不是5个苹果吗?我们这里的“苹果”是什么?
学生们会回答:是。
教师可以接着说:我们现在不把它叫苹果了,把它看做一个“基本单位”好了。当我们把看做一个基本单位时,加上就是3个基本单位加上2个基本单位,一共就是5个基本单位。5个基本单位就是。
所以我们才总结出了 “同分母的分数相加,为什么要分母不变,分子相加”这样的运算规则。
接下来,教师可以提问,和怎么理解呢?
学生们此时会回答,是3个的和,是2个的和。
教师问,怎样加在一起呢?
学生们稍停片刻,便会回答:“老师,这里出现了两个‘基本单位’啊,不知道这种情况怎么算。”
教师问,那么,什么情况下大家就会计算呢?
学生们会回答:“老师,‘基本单位相同时’我们就会计算。”
教师问,我们要计算与的和,是不是只要把它们化成“具有同一个基本单位的”分数就可以了,怎么做到这一点呢?
此时,学生们就自然地进入到“将与化为具有同分母的分数”这一个过程中。
一、引言
新课导入作为教学环节中一个不容忽视的环节,这个环节需要教师引导学生进入一个崭新的知识网络体系中。有效的新课导入,能够最大程度地引起学生的认知冲突,从而激发起学生对数学学习的好奇心,可以达到让学生更加轻松自然地进入学习新课的状态中,改善学生的学习状态,增强其学习的效果。另一方面,适当的新课导入也是对教师教学艺术的一种体现,有利于教师对整个教学过程的把握和安排,同时也熔铸了教师运筹帷幄、高瞻远瞩的智慧,闪烁着教师个人的教学风格。因此,笔者结合自身在小学数学教学方面的实际工作经验,对新课导入的问题以及如何在新课导入过程中贯彻新课程改革的新理念进行相关的分析。
二、营造愉悦的学习氛围,关注学生情感体验
学生的学习不仅仅需要认知的参与,更需要情感方面的投入;只有通过有效的方法对学生良好情感学习的体验,才能称得上是真正的自主学习模式。根据《义务教育数学课程标准(2011年版)》(以下简称《标准》)也有相关的说明:“数学教学属于数额学活动的教学,需要教师和学生的共同努力、积极参与其中,重视交往互动与共同发展”;该标准不仅仅重视了学生对于知识和技能的培养,还注重学生在数学学习过程中的情感体验和良好价值观的培养。通过新课导入,应该重视学生的情感体检,不仅仅局限于知识的获取,为学生们努力打造一个更加轻松、安全、平等的课堂环境,让学生处于一个更为轻松欢乐的情感体验下学习数学知识。
案例1:对于10的认识
师:同学们,请问我们学过了哪些数字呢?
生:0;1;2;3;4;5;6;7;8;9。
师:让我们现在来玩一个数字游戏。让同学都来猜猜,有一个最小的数字,可以表示什么都没有。也有一个数字是靠近0的,在我们所学过的数学中最大的是哪一个?
生:0;1;9。
师:我们所学过的数字最大是9,9在其他数字里面发生了一段小故事,大家想不想知道呢?
生:想!
(通过多媒体播放)
师:听了相关的故事后,大家认为数字“1”说的话对吗?再看看1和0分别结合在一起,变成了多少?
生:对!变成了10!
师:答对了!大家都很聪明,今天我们就从认识10开始进行新课的学习。
案例分析:
老师的定位不应该是居高临下,而是应该能和学生相处融洽,案例中的这位老师通过与学生一起做游戏,把自己看做是学生中的一员,与朋友的身份与学生共同相处,这就充分体现出“学生是数学学习的主人,教师作为如今数学学习的引导者和组织者”的新课程理念。此外,从教师利用随和的话语和亲切的交谈方式可以看出,教师对于学生的极大尊重,同时我们也能感受到学生们在数学体验过程中的愉快性,其学习的积极性无疑是极大的,因为通过情感体验,使学生的思维不再仅仅再局限于数学学科的领域内,而是偏向于更为广阔的领域方向进行延伸。
三、开拓开放空间,注意学生个性化差异
《标准》解读(2011版)支出:“数学教育的对象是一个个不同的活生生生命,它必然要面对个性化的差异。我们认为,因为不同学生的领悟能力和学习勤奋度不同,因此,在数学发展上也会呈现出不同的发展方向,因此,我们只是希望能够通过数学教育可以在最大程度上适应每一位学生对于数学的需求,从而能够最大程度地激发每一位学生的智慧潜能,为学生开拓出更大的发展空间。为此,笔者建议,新课导入应该重视对每一位学生的培训,同时要注意学生的个性化差异,要尽力对不同层次能力学生的培养,根据学生水平的不同,加强对每位学生掌握新课导入的适应性。
案例1:两位数作为出书的口算除法
师:在这节课之前,我们已经学习过了一位数作为除数的除法运算,那么我们首先进行复习。
通过多媒体展示。
生:80表示8个十;160里面有20个十;90个2是180;3个80是240。20个3是60。
教师出示口答题,并通过多媒体演示,依次找了一组学生来回答。
师:有90个气球,每个班可以分到30个,那么可以分给多少个班?我们应该怎么样列式,怎么样算出准确的结果?
生:90÷30
师:今天我们将进入两位数作为除数的除法运算。
案例2:平行四边形和梯形
师:我们在日常生活中可以看到各种形形式式的四边形,我们谁能举个例子说一下平时生活中的四边形。
生:梯,垃圾桶,伸缩门。
师:都是什么形?
生:平行四边形和梯形。
师:所以,平行四边形和梯形普遍存在于我们生活中,那什么是平行四边形和梯形,这就是我们今天讲课的主要内容。
案例分析:
案例1利用学生以前学过的相关知识,通过设计不同层次和形式去解决学习上存在的问题,同时还鼓励学生开拓新的思维,掌握多种不同的解决方法。通过这种教学模式,无形之中为学生带来更多的发展机会和发展空间,一方面促进学生潜移默化意识的形成,另一方面还能够使学生在各方面上得到不同程度的发展。案例2通过利用多媒体出示学生们相对熟悉的校园画面,以学生在校园内随意寻找四边形为切入点,在看到图形的时候能够让学生顺利理清图中的四边形;老师的授课也不太拘谨,随机提问,让学生有足够的空间自由回答,而多媒体上所出示的图画能够面向全体学生,使每一位学生都能参与到其中来。通过以上两个案例,我们可以看出,新课的导入应该要尽可能设计和提出一些具有开放性和探索性的问题,才能满足不同水平学生的需要。
四、设置问题情境,关注思想方法的运用
对于新课导入问题的设计,笔者认为要从学生的实际情况出发,由浅到深,采取阶梯式地逐步发展。设计的问题要让学生有想象的空间,让学生自己掌握在解决问题的过程中领略到数学思想方法的精髓。
案例3:平行四边形和梯形
师:有一种这样的游戏,我现在大体上对一个物体进行描述,看看谁能够猜出他的名字。我现在拿出一个图案并将其贴所在黑板上,大家认真看看,并准确地描述图形,猜出图案的形状。
生:它有四条边,两长两端,而且是互相平行的。是长方形。
师:正确,今天我们就来研究平行四边形和梯形的相应知识。
案例4:有关三角形面积的计算
师:同学们,请问我们应该如何计算出平行四边形的面积呢?
学生异口同声地回答。
师:有谁知道平行四边形的计算公式是怎么样推到出来的吗?
学生一边思索着,老师一边通过多媒体进行演示剪拼。
同时,老师板书:转化。
师:转化的思想在数学中应用十分广泛,是一种行之有效的数学解题方法,“转化”的思想还能运用到三角形面积的计算上。我们在这节课上一起进行探讨。
案例分析:小学数学老师在传统的新课导入上往往只会注重学生关于知识点的了解情况,并不重视学生在数学思想、数学方法还有解决数学问题的策略选择上多下功夫。从上述两个案例,我们可以发现,学生对于数学知识的获取,已经不再是以往单纯的以“接受数学知识”作为核心,同时也应当注意对一些数学思想和数学方法获取。为此,笔者建议对于新课的导入,可以结合数学思想、方法和解决问题得到方法来实施,不再仅仅局限于对过去只是点的复习。上面的两个案例就足以证明了这点。
参考文献
二、抓住问题探究特性,开展解题探析指导活动
著名教育学家陈苏芹曾经指出:“问题是数学的‘精华’,应将问题解答方法讲解作为自身重任,坚持实践融于问题教学中,提高探究分析等学习能力。”众所周知,问题教学,不是为了解答问题,而是为了传授解题技能,“授之以渔”。新实施的小学数学课程标准也强调指出,要把解答问题的技能传授作为问题案例教学的重要任务和环节,进行有效的实施和深入的开展。因此,在数学问题讲解活动中,小学数学教师要利用问题案例解答的探究特性,将问题案例讲解的过程变化为问题解答技能传授的过程,发挥教师“传道授业解惑”的主导功效,对解题方法运用、解题策略的设定进行有效的指导和讲解,提升小学生探析、解答问题的技能和素养。问题:有一根长为47米竹竿,全长的16插入土中,露出外面的部分占全长的几分之几,露出来的部分有多长?在上述问题案例解答中,教师采用“先探究(学生)———在探讨(师生)———再归纳(教师)”的三段式教学法,学生探究分析问题条件,认识到该问题设计意图是:“利用分数乘除法解决问题”,需要运用的数学知识点是:“分数乘除法的知识”。师生进行互动探讨,教师带领交流讨论,学生进行解题,师生归纳总结。上述解题过程中,学生在自主探究、师生探讨、教师指导等环节中,对该问题解答的方法和策略有了深刻掌握,同时学习能力也得到了有效锻炼,较好落实了新课改的目标要求。
三、抓住问题综合特性,培养综合解析问题思想
小学生处在学习能力发展的初始期,处于学习活动技能的积淀期。数学问题案例解答活动,为小学生良好学习技能的锻炼和提升提供了有效途径。解析问题的方法多种多样,有时需要运用多种解题策略和思考方法,这就需要学生要有良好的综合解析问题的思想和素养。小学数学教师在教学活动中,要有意识的运用问题案例的综合概括特性,设置综合性问题,逐步引导学生感知分类讨论思想、数形结合思想和化归转化思想的内容,逐渐养成和树立良好的综合分析解题思想策略。如在“路程类应用题”教学中,小学数学教师可以设置综合性的路程类应用题,要求学生借助于画线段图的方法进行解题分析活动,并有意识的向学生指出这一过程运用了“数形结合”解题思想。学生在此过程中,对数形结合思想有了初步感知和认识,对良好解题思想树立起到促进作用。
美术是一门特别的学科。它能使学生感受美,表现美和创造美,从中体现快乐和自由。它能让学生学到绘画与制作的本领;能培养学生的综合能力,发挥学生在各个方面的才华;能使学生热爱学习。如今的美术课不再是以前那样,教师在上面画,学生在下面画;素质教育已进入美术教学,在课堂中以发展学生为本,使学生成为学习的主人;在作业过程中,更注重学生在学习过程中的探究,让学生学得轻松,学得快乐。美术课堂就好像一个乐园,让学生乐在其中。
为了上好每一堂课,在教学中必须坚持每讲新课之前作好充分准备,认真钻研教学方法,精心设计教学环节,积极利用多媒体手段。但美术课的准备绝不仅仅是教具的准备,它要有更广泛的内容。除了有形的课堂资源的准备之外,更要准备的是老师多方面的知识、深厚的文化底蕴,这需要我努力的学习知识,长期积累。
教学案例:
1.游戏性教学符合“愉快教育”的指导精神。“愉快教育”的实质是变“苦学”为“乐学”;变被动的“要我学”为主动的“我要学”。游戏性教学正是通过游戏的形式使这一变式成立的。在《登山游戏》一课的教学中,通过让学生玩各种棋类的游戏,通过实物棋谱,引导学生观察游戏棋组成部分。名称、路线图、装饰美化的图案等,让学生独立设计一份游戏棋,让学生自己安排棋子走的路径他们特别兴奋,有创作与游戏的愿望,课中能引用学生已有的游戏经验,让他们自由创想棋的玩法与规则,使学生玩得有趣,也设计得生动。
2.在游戏过程中,学生精神放松,课堂气氛活跃。在愉快中得到知识,学到技能、巩固知识、熟练技能。只有巧用游戏,激发学生的学习兴趣,使他们“乐学”。古人云:“教人未见意趣,必不乐学。”我们的新课程标准也明确提出教学要培养学生学习美术的兴趣,美术学习的兴趣是美术教学的生命。同时巧用游戏,激发学生的表现欲和想象力,从而增强创新意识和能力游戏能给学生带来学习的兴趣,能给课堂营造良好的氛围。而创设良好活跃的氛围,能激发学生的创新欲望。心理学研究表明:良好的心境可以使联想活跃,思维敏捷,表达欲增强,积极的游戏活动能激发学生创新意识。同时模仿能力强,好动,好玩,不怕羞,爱表现也是小学生的天性。根据小学生的这些特点,多组织一些游戏活动,以及巧用游戏,引入竞争机制,从而增强集体主义观念和团结合作精神,无疑对学生有极大的益处。在游戏中增加学生的竞争意识,树立不甘落后的学习劲头。我觉得运用游戏性美术教育教学活动需要注意的地方是:教师设计的游戏内容和形式要紧密配合,课堂上组织好游戏的各个环节,特别是强抓课堂常规,不能让混乱的课堂纪律,影响了教学效果;教师要提前准备好游戏中所用的教具和实物;教师在游戏中语言要突出重点;运用儿童语言把讲、听、看、玩有机地结合起来,使学生在玩中获得知识和美感。
2、使学生认识到解决问题策略的多样性,初步形成寻找解决问题最优方案的意识。
3、使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。
教学重点:探究解决问题的最优方案,体会优化的思想。
教学难点:寻找解决问题最优方案,提高学生解决问题的能力。
教学过程:
一、情境导入:
师:同学们,你们有没有在家里接待过客人呀?那你是怎样接待客人的呢?谁愿意来说一说?
1、星期天的上午,小明家的门铃响了,原来是李阿姨来到小明家做客。(出示主题图P113页)
2、学生自主设计方案
3、展示学生不同的方案
4、师根据学生设计的方案,适时用制作好的纸片在黑板上罗列出来。用箭头表示顺序。
4、学生比较选择最合理的安排方法
5、提升“合理”、拓展认识
对他们的合理安排,你们有何想法?
1、为了节省时间,强强在乘车时认真看书。
2、为了提高学习质量,红红边吃饭边看《少儿英语电视》节目。
6、小结:对呀!我们在做事之前先要明确沏茶的大致顺序,也就是哪些事情要先做,哪些事情要后做,然后再考虑哪些事情可以同时做,这样才能节省时间!
二、探究新知,研究问题
1、示例1,呈现研究问题
师:好,现在李阿姨也喝完茶了,小明的妈妈准备用自己最拿手的烙饼招待她。(出示例1图)
(1)你能从画面上得到哪些数学信息?
师有意识着重强调:“每次只能烙两张饼”。
(2)想一想,如果只烙一张饼,需要多长时间?
(3)烙一张饼需要6分钟,那如果要烙两张饼,最快要用几分钟?
有些学生会想当然地回答12分钟,这时教师追问:12分钟吗?(进一步引导学生体会最优方法的思想)
师:为什么是12分钟呀?
(4)学生回答后师总结:我们烙两张饼的时候,可以同时烙两张饼的正面或反面,烙正面的时候用3分钟,烙反面时也是3分钟,所以总共所用的时间是6分钟。(教师边叙述边演示,课件出示表格)
(5)师:那如果烙4张可以怎么烙?追问:6张、20张呢?
饼数
最佳方法
所用时间(分)
2
同时烙两张饼的正面或反面
6分钟
4
6
8
2、自主设计方案
(1)回到主题图:现在“妈妈、李阿姨和小明每人吃一张饼”,一共需要烙几张饼呢?(3张)
(2)小组合作:请你们帮小明妈妈想一想,她应该怎样烙“才能让大家最快的吃上烙饼?”
(3)展示学生不同的方案学生到展示台演示讲解
(4)学生比较选择最合理的安排方法
(5)教师演示,烙三张饼的最佳方法和最短时间。
(6)拓展延伸:想一想,如果要烙5张饼,怎样烙才能尽快吃上饼呢?有困难的小组可以利用组里的学具摆一摆。
这里让同学独立思考,后小组交流,最后集体交流。
3、探究规律
师:如果要烙的饼的张数是双数,两张两张地烙最直接,而且简单,所以我们最好采用这个方法;如果要烙的饼的张数是单数,我们可以怎么烙?(前面的两张两张地烙,剩下最后3张的时候用刚才所学的烙3张饼的最优方法烙)这样是不是最省时间?
4、结合生活,实践应用