时间:2022-07-05 03:44:07
序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇数学知识点总结范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!
1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
知识点6:特殊三角函数值
1、cos30°=。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
知识点7:圆的基本性质
1、半圆或直径所对的圆周角是直角。
2、任意一个三角形一定有一个外接圆。
3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、在同圆或等圆中,相等的圆心角所对的弧相等。
5、同弧所对的圆周角等于圆心角的一半。
6、同圆或等圆的半径相等。
7、过三个点一定可以作一个圆。
8、长度相等的两条弧是等弧。
9、在同圆或等圆中,相等的圆心角所对的弧相等。
10、经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1、直线与圆有唯一公共点时,叫做直线与圆相切。
2、三角形的外接圆的圆心叫做三角形的外心。
3、弦切角等于所夹的弧所对的圆心角。
4、三角形的内切圆的圆心叫做三角形的内心。
5、垂直于半径的直线必为圆的切线。
初中数学知识点总结如下。
1、代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数)
2、几何部分:线段、角相交线、平行线三角形、四边形、相似形、圆。
(来源:文章屋网 )
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
二、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
三、分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
四、体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
五、数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
七年级下数学知识点1第一章 相交线与平行线
一、知识框架
二、知识概念
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质
对顶角的性质:对顶角相等。
10垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
七年级下数学知识点2第一章 平面直角坐标系
一.知识框架
二.知识概念
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;
竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。
七年级下数学知识点3第一章 三角形
一.知识框架
二.知识概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
12.公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。
第八章 二元一次方程组
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。
方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法.重点:二元一次方程组的解法,列二元一次方程组解决实际问题.难点:二元一次方程组解决实际问题
七年级下数学知识点4第九章 不等式与不等式组
一.知识框架
二、知识概念
1.用符号“”“≤ ”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。
7.定理与性质
不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。
七年级下数学知识点5第十章 数据的收集、整理与描述
一.知识框架
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
六年级上册数学知识总结1圆
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π = 周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径=
πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)
S圆 =πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;
反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积
=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。
因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
六年级上册数学知识总结2比
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数:分子分数线(—)分母(不能为0) 分数的基本性质 分数是一个数
比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用
1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 乙=甲÷几分之几 几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。(3)找等量关系。(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
六年级上册数学知识总结3分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;
运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?
速度是单位时间内行驶的路程。
速度=路程÷时间 时间=路程÷速度 路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙 少:(乙-甲)÷乙
六年级上册数学知识总结4百分数(一)
一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。
一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
六年级上册数学知识总结5扇形统计图的意义
1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:
(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
数学广角--数与形
2+4+6+8+10+12+14+16+18+20=(110)
规律:从2开始的n个连续偶数的和等于n×(n+1)。
10×(10+1)=10×11=110
位置与方向(二)
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物置的方法:
(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
【公式】
加数+加数=和
一个加数=和-另一个加数
2 、整数减法
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3、 整数乘法
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。
【公式】
一个因数× 一个因数 =积
一个因数=积÷另一个因数
4 、整数除法
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
【公式】
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
二、小数四则运算
1、小数加法
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2、小数减法
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3、小数乘法
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4、小数除法
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5、乘方
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
三、分数四则运算
1. 分数加法
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3. 分数乘法
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
小学二年级上册数学知识点整理
1.长度单位:是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。其国际单位是“米”(符号“m”),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。
2.米:国际单位制中,长度的标准单位是“米”,用符号“m”表示。
3.分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
4.厘米:厘米,长度单位。简写(符号)为:cm.
有关厘米的单位转换: 1厘米=10毫米=0.1分米=0.01米=0.00001千米。
5.毫米:英文缩写MM(或mm、㎜)
进率关:1毫米=0.1厘米;
6.进位:加法运算中,每一数位上的数等于基数时向前一位数进一。
以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。
在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。
7.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。
8.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39.
1不能够减去2,所以必须向高位的5借位。
9.连加:多个数字连续相加叫做连加。例如:28+24+23=85.
10.连减:多个数字连续相减叫做连减。例如:85-40-26=19.
11.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70。
12.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
符号 :∠
13.乘法算式中各数的名称:是指将相同的数加法起来的快捷方式。其运算结果称为积。
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数) ×(乘号) 200(因数) =(等于号) 2000(积)
1.角的动态定义
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
2.角的种类
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!
3.乘法的运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
小学二年级上册数学学习方法与技巧
一、在常规训练中培养学生的习惯意识
1、预习与复习的习惯。
以往,有的老师没有注意培养学生的预习习惯,新课上完后,学生才知道学习了什么,这样无准备的学习,是不可能取得最佳效果的。预习好比火力侦察,能是学生明确本节课的学习目标,了解重难点在那里,带者疑问上课,从而可以提课堂学习效率。教学时间表明,课堂上学生学会了的东西,课后还会忘记,这是大脑遗忘规律的表现。因此,只有即使复习,才能降低遗忘率,巩固所学知识,而且还可以帮助学生把平时所学的零散知识系统化,条理化,弥补学生知识的缺陷。
2、课前准备习惯
课前准备是良好课堂秩序的一种保障,学生每次上完课后及时收拾好上节课学习用品并准备好下节课用品如课本、工具书、练习本、笔记本、文具等学习用品并要按一定顺序摆放。这样既避免了课堂上杂乱无章的现象,又节省了课堂时间。
二、在课堂教学中培养学生的数学学习习惯
1、培养良好的坐姿习惯
小学生的骨骼正处于发育阶段,柔韧性非常好,但同时也非常容易受到“冲击”。小学生在读写时如果坐姿不正确,久而久之,将养成不良的坐姿习惯,很有可能造成骨骼的变形,不利于身体保持平衡,出现驼背或肌肉疲劳等症状。为了改变这种不良习惯,我们在课堂上经常要用一句话来提示学生,“坐如钟”一句简短的语言,能提醒学生及时改变不良的坐姿。我还经常告诉学生坐姿与自己的视力也密切相关。不正确的坐姿会造成眼睛的疲劳、使眼睫状肌长期处于紧张状态,长期以往,势必导致视力的下降。不良坐姿也会影响自己将来身体美,不良坐姿还会影响将来自己的生活和工作。相信正确地引导培养,学生均能逐渐养成良好的坐姿习惯。
2、养成良好的书写习惯
首先,重视学生书写的姿势,养成良好的书写习惯。我们来分析为什么有的学生书写不规范,而且书写质量很差,这跟书写习惯养成有密切关系,那么我们必须重视学生书写姿势的培养。严格要求,反复强化。良好习惯的形成是通过训练不断强化的结果。如:坐时要端正,腰杆挺直,要求眼睛视线与水平面接近直角,距离在1厘米左右,这样既保证了脊椎正常发育,又做到了用眼卫生,书写时不要求多,也不要求快,一定要让学生形成严谨认真的书写习惯。除严格之外,还有一个反复强化持久要求的问题,只有反复不断地强化练习,才能使学生逐渐适应,最终才能养成习惯。所以书写习惯的培养就成为我们课堂教学中必不可少的内容。在课堂上只要是提笔书写,我就让学生想口诀:书写要做到三个一:“眼离书本一尺远,胸离书桌一拳远,手离笔尖一寸远”。这样学生通过简单的儿歌来强化记忆书写的正确姿势。长此以往,一旦养成良好的书写习惯,就能使学生建立起稳定有效的学习模式,使其受益终身;然而良好书写习惯的养成也是非常困难的。但是我们坚信,只要锲而不舍,良好的书写习惯就必然会逐步形成。
3、培养学生认真审题的习惯
对于计算题,有的学生提笔就算,加上计算比较单调枯燥,可能引起心理疲劳,遇上相似或相近的数字、符号,往往出现运算顺序错误,抄错符号或抄错数据。还缺乏良好的计算习惯,尤其是学生学习了混合运算之后,先后顺序搞不清楚。因此,在教学过程中,应培养学生认真审题,看清题目中的每一个数据和运算符号,再进行计算的良好习惯。认真读题,抓住关键字眼,找出已知条件,认真分析,每道题至少读两遍,达到题意弄明白方可解答。
要养成认真思考的习惯,应用题的解答需要一定的思考时间,因此我们教师在平时的学习中,要培养学生学会认真思考。认真检查的习惯,对于低年级的学生,具有一定的难度,学生往往不愿意检查,也不会检查。既然学生在这一方面有欠缺就需要教师在平时的学习中,多指导、多引导,教给学生正确的检查方法,在检查中使学生意识到认真检查的重要性,从而能坚持认真去做。
认真验算的习惯,很多学生以为验算可有可无,每次写完题之后就感觉万事大吉,大功告成了,为此以往很多老师采取批评的态度,但结果没有太大的改进。验算不仅能保证计算正确无误,而且还能培养学生对学习一丝不苟的态度。因此,在教学过程中,我们还要教育学生正确的方法,对题目中的数字、运算符号等书写清楚规范,竖式要写清楚,排列整齐,以便检查。培养学生学会认真审题的能力不是一日之功,它需要教师平时多引导、多检查、多表扬、多鼓励。让学生逐步养成。
小学二年级上册数学重点难点解析
1、计算要过关:
对于二年级学生来说,最先碰到的问题就是计算问题,计算问题是重点也是难点。根据学校数学的学习情况,孩子还没有学习乘除法的列竖式,尤其是乘法的列竖式在二年级数学的学习中要求的比较多,比如数学课本下册第三讲速算与巧算中就多次用到了乘法,另外一些应用题中也会有所应用。
2、枚举是难点:
日
期:___________
2021年初一下册数学知识点总结北师大版【一】
多项式除以单项式
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―___时,通常省略数字“___”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n=am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。
3、此法则也可以逆用,即:amn=(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
3、此法则也可以逆用,即:anbn=(ab)n。
八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有___个或___个以上的运算,法则仍然成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
2、此法则也可以逆用,即:am-n=am÷an(a≠0)。
十、零指数幂
1、零指数幂的意义:任何不等于0的数的___次幂都等于1,即:a0=1(a≠0)。
十一、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(__+a)(__+b)=__2+(a+b)__+ab。
十三、平方差公式
1、(a+b)(a-b)=a___-b2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a___-b2=(a+b)(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
高二数学知识点总结(一)
【一】
(一)基本概念
必然事件
确定事件
1、事件不可能事件
不确定事件(随机事件)
2、什么叫概率?
表示一个事件发生可能性的大小,记为P(事件名称)=a;
练习一:判断下列事件的类型
(1)今天是星期二,明天是星期三;
(2)掷一枚质地均匀的正方体骰子,得到点数7;
(3)买彩票中了500万大奖;
(4)抛两枚硬币都是正面朝上;
(5)从一副洗好的牌中(54张)中抽出红桃A。
(二)预测随机事件的概率
1、步骤:
(1)找出所有机会均等的结果,作为概率的分母
注:不能仅凭主观判断,而应利用列举法、树状图、列表法等方法找。
(2)明确关注结果,作为分子
2、用列表法或树状图分析复杂情况下机会均等结果
【二】
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.
【三】
1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.
8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
高二数学知识点总结(二)
第一章 算法初步
算法的概念
算法的特点
(1)有限性:
一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
(2)确定性:
算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当 是模棱两可.
(3)顺序性与正确性:
算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个 确定的 后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每 一 步都准确无误,才能完成问题.
(4)不唯一性:
求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
(5)普遍性:
很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过 有限、事先设计好的步骤加以解决.
程序框图
1、程序框图基本概念:
(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来 准确、直观地表示算法的图形。
一个程序框图包括以下几部分:
1.表示相应操作的程序框;
2.带箭头的流程线;
3.程序框外
4.必要文字说明。
(二)构成程序框的图形符号及其作用
画程序框图的规则如下:
1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退 出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果; 另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而
下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B
框是依次执行的,只有在执行完A框指定的操作后,才能接着执
行B框所指定的操作。
2、条件结构:
条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结 构。条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B 框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可 以有多个判断框。
3、循环结构:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况, 这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。 循环结构又称重复结构。
循环结构可细分为两类:
(1)一类是当型循环结构
如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
(2)另一类是直到型循环结构
如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。
当型循环结构 直到型循环结构
输入、输出语句和赋值语句
赋值语句
(1)赋值语句的一般格式
(2)赋值语句的作用是将表达式所代表的值赋给变量;
(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。赋值号的左右两 边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;
(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或 算式;
(5)对于一个变量可以多次赋值。
注意:
①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。
②赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。
③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)
④赋值号“=”与数学中的等号意义不同。
注意:
在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束。计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;若条件不符合,则执行ELSE后面的语句2
第二章 统计
简单随机抽样
1.总体和样本:
1.研究对象的全体叫做总体.
2.每个研究对象叫做个体.
3.总体中个体的总数叫做总体容量.
4.样本容量:一般从总体中随机抽取一部分:
研究,我们称它为样本.其中个体的个数称为样本容量.
2.简单随机抽样:
从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点:
每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间 无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在 总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:
(1)抽签法;
⑵随机数表法;
⑶计算机模拟法;
⑷使用统计软件直接抽取。
4.抽签法:
(1)给调查对象群体中的每一个对象编号;
(2)准备抽签的工具,实施抽签
(3)对样本中的每一个个体进行测量或调查
5.随机数表法
系统抽样
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样 本。第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:
(1)按比例分层抽样:
根据各种类型或层次中的单位数目占总体单位数目的比重来抽取样本的方法。
(2)不按比例分层抽样:
有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便 于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体 时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢 复到总体中各层实际的比例结构。
2.2.2用样本的数字特征估计总体的数字特征
1、平均值:
2、.样本标准差:
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变
(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍
2.3.2两个变量的线性相关
1、概念: (1)回归直线方程 (2)回归系数
2.回归直线方程的应用
(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系
(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
第三章 概 率
随机事件的概率及概率的意义
1、基本概念:
(1)必然事件:在某种条件下,一定会发生的事件,叫做必然事件;
(2)不可能事件:在某种条件下,一定不会发生的事件,叫做不可能事件;
(3)随机事件:在某种条件下可能发生也可能不发生的事件,叫做随机事件;
(4)基本事件:
试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样 的 时间叫基本事件;
(5)基本事件空间:
所有基本事件构成的集合,叫做基本事件空间,用大写希腊字母Ω表示;
(5)频数、频率:
在相同的条件下重复n次试验,观察某一事件A是否出现,称n次试验 中事件A出现的次数为事件A出现的频数;称事件A出现的比例为事 件A出现的频率;
(6)概率:
在n次重复进行的试验中,时间A发生的频率m\n,当n很大时,总是在某个常 熟附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常熟叫做事件A 的概率,记作P(A),0≤P(A)≤1;
概率的基本性质
1.必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;
2.当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);
3.若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于 是有P(A)=1—P(B);
4.互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不 会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2) 事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事 件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2) 事件B发生事件A不发生,对立事件互斥事件的特殊情形。
古典概型
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=#FormatImgID_5#
几何概型
基本概念:
(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积) 成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:
P(A)=
(3)几何概型的特点:
1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等.
高二数学知识点总结(三)
一、简谐运动
1.机械振动:机械振动是指物体在平衡位置附近所做的往复运动.
2.回复力:回复力是指振动物体所受到的指向平衡位置的力,是由作用效果来命名的.回复力的作用效果总是将物体拉回平衡位置,从而使物体围绕平衡位置做周期性的往复运动。回复力是由振动物体所受力的合力(如弹簧振子)沿振动方向的分力(如单摆)提供的,这就是回复力的来源。
3.平衡位置:平衡位置是指物体在振动中所受的回复力为零的位置,此时振子未必一定处于平衡状态.比如单摆经过平衡位置时,虽然回复力为零,但合外力并不为零,还有向心力.
4.描述振动的物理量:
①位移总是相对于平衡位置而言的,方向总是由平衡位置指向振子所在的位置—总是背离平衡位置向外;②振幅是物体离开平衡位置的最大距离,它描述的是振动的强弱,振幅是标量;③频率是单位时间内完成全振动的次数;④相位用来描述振子振动的步调。如果振动的振动情况完全相反,则振动步调相反,为反相位.
5.简谐运动:A、简谐运动的回复力和位移的变化规律;B、单摆的周期。由本身性质决定的周期叫固有周期,与摆球的质量、振幅(振动的总能量)无关。
6.简谐运动的表达式和图象:x=Asin(ωt+φ0) 简谐运动的图象描述的是一个质点做简谐运动时,在不同时刻的位移,因而振动图象反映了振子的运动规律(注意:振动图象不是运动轨迹)。由振动图象还可以确定振子某时刻的振动方向.
7.简谐运动的能量:不计摩擦和空气阻力的振动是理想化的振动,此时系统只有重力或弹力做功,机械能守恒。振动的能量和振幅有关,振幅越大,振动的能量越大。
高二数学知识点总结(四)
随机事件的概率
平面直角坐标系
证明不等式的方法
绝对值不等式
均匀随机数的产生
随机事件的概率
概率的基本性质
古典概型
不等式与不等关系
基本不等式
等差数列
简单的逻辑连接词
全称量词与存在量词
基本不等式的证明
正弦定理
充要条件
三角函数的诱导公式
函数y=Asin(wx+φ)的图像
正弦函数、余弦函数的图象
等比数列
四种命题
三角函数模型的简单应用
任意角的三角函数
《随机数的产生》
不等式
等差数列的前N项和
任意角的三角函数
函数y=Asin(ωx+ψ)的图象
任意角和弧度制
正弦函数、余弦函数的图象
高二数学知识点总结(五)
练习:
已知方程 表示焦点在x轴
上的椭圆,则m的取值范围是 .
(0,4)
(1,2)
练习:求适合下列条件的椭圆的标准方程:
(2)焦点为F1(0,-3),F2(0,3),且a=5.
(3)两个焦点分别是F1(-2,0)、F2(2,0),且过P(2,3)点;
(4)经过点P(-2,0)和Q(0,-3).
小结:求椭圆标准方程的步骤:
①定位:确定焦点所在的坐标轴;
②定量:求a, b的值.
例1 :将圆 = 4上的点的横坐标保持不变,
纵坐标变为原来的一半,求所的曲线的方程,
并说明它是什么曲线?
解:
将圆按照某个方向均匀地压缩(拉长),可以得到椭圆。
2)利用中间变量求点的轨迹方程
的方法是解析几何中常用的方法;
练习
1 椭圆上一点P到一个焦点的距离为5,
则P到另一个焦点的距离为( )
A.5 B.6 C.4 D.10
A
2.椭圆
的焦点坐标是( )
A.(±5,0)?
B.(0,±5) ?
C.(0,±12)?
D.(±12,0)
C
3.已知椭圆的方程为 ,焦点在X轴上,
则其焦距为( )
A 2 B 2
C 2 D 2
A
,焦点在y轴上的椭圆的标准方程
l 是 __________.
例2已知圆A:(x+3)2+y2=100,圆A内一
定点B(3,0),圆P过B点且与圆A内切,求圆心
P的轨迹方程.
解:设|PB|=r.
圆P与圆A内切,圆A的半径为10.
∴两圆的圆心距|PA|=10-r,
即|PA|+|PB|=10(大于|AB|).
∴点P的轨迹是以A、B两点为焦点的椭圆.
∴2a=10,
2c=|AB|=6,
∴a=5,c=3.
∴b2=a2-c2=25-9=16.
即点P的轨迹方程为 =1.
例3在ABC中,BC=24,AC、AB边上的中线之
和为39,求ABC的重心的轨迹方程.
#FormatImgID_0#
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
直角三角形判定定理:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
相似三角形性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
判定定理推论
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
性质
1.相似三角形对应角相等,对应边成比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相似三角形周长的比等于相似比。
4.相似三角形面积的比等于相似比的平方。
5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6.若a:b =b:c,即b的平方=ac,则b叫做a,c的比例中项
7.c/d=a/b 等同于ad=bc.
8.必须是在同一平面内的三角形里
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴ 分母相同的分数,分子大的那个分数就大。
⑵ 分子相同的分数,分母小的那个分数就大。
⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷ 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
⑴ 真分数:分子比分母小的分数叫做真分数。真分数小于1。
⑵ 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
⑶ 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
⑴ 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑵ 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
⑶ 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
⑴ 分子、分母是互质数的分数,叫做最简分数。
⑵ 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑶ 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑷ 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑸ 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒 数