期刊 科普 SCI期刊 投稿技巧 学术 出书

首页 > 优秀范文 > 中学数学教学论文

中学数学教学论文样例十一篇

时间:2023-03-23 15:20:56

序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇中学数学教学论文范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!

篇1

二、创设问题情境,增强课堂的生动活泼感

数学学习是学习者主动接受知识和建构的过程,并非对于知识的被动接受.因此,教师要充分了解和掌握学生的真实思维活动,调动学生学习数学的积极性,激发他们参与数学课堂互动的激情,创设有助于激起学生兴趣的问题情境,让学生处在生动活泼的数学课堂中,达到理解和认识数学知识的目的.一个优质的问题情境,可以促进学生更好地理解数学概念、数学原理以及形成属于自己的数学学习方法;一个优质的问题情境,可以让学生原有的生活经验和数学常识显现出来,让情境引起的关于数学意义的思考融入学生学习数学的感情中,让学生经历由问题情境进入自我建构模型,将数学知识融会贯通,运用数学的学习过程.问题情境的创设,一般是通过描述或编写一段贴近学生生活的故事或者事件,而要解决的问题就融入在这个故事中.这个故事与学生的生活背景和数学知识背景相联系,且不会产生与原有知识相冲突的数学问题.在创设问题情境环节中,教师必须注意:第一,深入了解并掌握学生的思维活动;第二,协助学生获取缘由的经验和预备知识;第三,注重每个学生的认知差异性.

三、教学过程中融入

数学思想和数学方法数学知识并不是孤立的、单向接受的学术知识点,在数学思想中不能用固定的套路来解决各式各样的数学问题,学生只有充分了解和掌握数学知识点,才能将其融会贯通地运用于解决各种数学问题中.因此,锻炼学生的主动学习能力以及重视学生理解和掌握数学思想,对于提升学生的数学能力具有至关重要的作用.只有这样,学生在记忆、理解和掌握数学知识时,才能游刃有余.让学生借助基本的数学思想以及方法来解决纷繁复杂的数学问题,可以促进学生数学思维能力的发展.根据现代教育理论,数学是靠学生自主探索出来的,而不是纯粹教出来或可以模仿出来的.因此,在数学教学过程中要实现学生掌握数学思想和方法,必须将数学思想和数学方法融入教学过程,使三者成为一个有机组成部分,避免脱离内容形式而进行单向的、孤立的传授.在数学教学中,教师要确立学生的主体地位,鼓励学生自己主动地建构数学知识.在初中数学教学中,不仅要让学生通过自主与传授结合的方式来理解数学的基础知识,掌握基本的操作技能,更重要的是要着重于培养学生分析问题、解决问题的能力,培养学生优良的思维习惯.

四、坚持“导学先行”的原则

“导学先行”的原则是指在初中数学教学中要确立“以学生为主体地位,以教师为主导地位”的模式.将学习的主动权交给学生,让学生在分析、解决、探索问题的过程中,具有主人翁意识,而教师在这个过程中起积极引导作用.当学生偏离学习的轨道时,教师要将其拉回,并辅导他们自主学习.数学教学过程是一个师生双向互动的过程,是一个认知的过程.教师在这个认知过程中要采用符合初中生的年龄特征和认知规律的教学方法,激发学生学习数学的兴趣,培养学生主动学习的习惯.初中生正值青春懵懂的年龄,他们既有小学生的活泼好动、充满好奇心的特质,也有期待走向成熟的特质.因此,在数学教学过程中,教师必须抓住初中生的积极因素,鼓励学生勇于提问、大胆设疑、探索未知,使学生感到喜悦和兴奋,在寓教于乐的氛围中实现教学目标.

篇2

中职学校数学教材的难度并不高,以中职学生的水平是能够完全理解的,之所以会出现理解困难,主要就是由于心理因素的影响.中职学校学生的自控水平较差,对于数学学习普遍缺乏动机,而学生在学习相关知识时必须要有学习动机的支持.要想有效的提升数学教学效果,教师就需要采取科学的方法来唤起学生学习数学知识的动机.在数学课堂上,要改变传统的教学模式,将数学教学与学生的日常生活进行密切的结合,创设出多种多样的教学情景,激发出学生的探索动机,鼓励学生开展自主学习与小组互助式学习,不断的优化数学教学效果.此外,教师还要根据学生的专业来开展数学教学,例如,对于医学专业的学生,可以多列举一些与学生专业学习息息相关的知识,让学生感受到数学知识的作用,明确学习数学知识的必要性与迫切性,这样才能够有效提升学生学习数学的兴趣,只有学生拥有兴趣,数学教学成果才能够得以提升[3].

2.应用分层教学模式,提升学生学习数学的自信心

中职学生在中学学习阶段基础水平一直较差,成绩不理想,常常受到教师的忽视与冷落,在这种因素下,很多学生都开始质疑自己,对学习逐渐产生了厌学情绪与自卑感.为了扭转这种局势,在数学教学课堂中,教师可以积极的将分层教学法应用在其中,对不同类型的学生提供不同的学习内容,让较差的学生可以查缺补漏,让基础好的学生可以实现自我的提升.这样,不仅仅可以帮助学生明确学习任务,还可以为学生提供一定的发展空间[4].在课堂讲解过程中,教师需要把握好重点与难点,根据学生的总体水平进行讲解,尊重到每一个学生的需求,让他们都能够得到相应的收获.此外,教师还要鼓励学生多展示自我,逐步的提升学生的自信心,这对于学生后续的发展也是十分有益的.

篇3

2通过巧设问题激发学生的思考兴趣

知识来源于对疑问的解答,然而较大疑问的过程中正是让学生进行思维分析的过程。可以这么说:提出的疑问也就是思维的目的,有了疑问,学生的思维才会有了明确的方向。因此,在新课标的数学教学中,对数学教师的提问的水品越来越高,所提的问题必须要具备两个特征:启发性和质疑性。以往传统式的教学,数学教师在课堂上所提及的问题基本上是课本中例出的问题,不具有创新、新颖性,相当于是照本宣科,学生只需要是望着书本进行作答就行了,这样一问一答的教与学的模式,45min的一堂课下来,学生根本不需要动太多的脑筋思考,只需要根据书本上了“朗读”就行了,学习思维的培养根本就无从谈起。所以,初中数学教学要改变这种教学现状,要不断的创新特问的方式和新颖的问题,给足学生思考的时间和思维的空间,让学生充分的思考、分析其问题,并结合该堂课的数学内容进行作答。这样有利于培养学生对所学知识的理解,同时还能培养学生的思维能力。当然,教师在提出问题的时候不能盲目的提问,必须要满足初中学生的学习特点:难度适中、独特、新颖、具有一定的启发性、目的性的特点等。

3加强训练使学生掌握科学的思维方法

思维能力的培养不仅仅是教师在口头上的教导,它还需要通过各种相关的训练来加强、熟练、掌握。

3.1培养学生分析能力以及比较水平

新课标下的数学教学过程中,涌入了较多新的知识点、新的概念,通过这些新知识的涌入之后,不仅增加了知识的全面性,还提升了知识的复杂性。这就要求学生在学习上要下功夫了解各项知识之间的个性与共性。

3.2训练学生抽象的、概括性的思维

篇4

二、不同教学范式视角下中学数学教学的特点

(一)科学范式视角下的中学数学教学

科学范式在理论上受课程论、教学论、社会学、历史、经济学及教育学、心理学等学科理论的影响和制约,其中课程论和教学论的发展为数学教学的科学范式理论研究奠定了基础。科学范式视角下的中学数学教学强调在教学内容、教学过程、数学教学研究等方面有章可循,要坚持相关的基本原则以及遵循数学教学的客观规律。在教学内容的选择上遵循以下规律:(1)适合性。教学内容既要注重数学学科结构,也要考虑学生的认知结构和心理特征。(2)普及性。教学内容特别是例题的设计不仅要适合优等生,更要照顾到大多数学生的需要。(3)应用性。教学内容既要体现双基的要求更要注重学生对知识点的应用。在教学过程中做到:(1)处理好教学过程中教师、学生、教材等因素间的相互关系;(2)在已有的教学条件下,根据学生学习基础等情况对教学方法做出最优化选择,使数学课堂教学质量达到最佳;(3)对教师的教和学生的学做出合理的评价。在数学教学研究方面,认同数学教学的理论研究属于教育科学的范畴,因此科学范式倡导用教育科学研究中操作性较强的方法和原理如观察法、调查法、文献法等对数学教学进行理论研究和实践探讨。科学教学范式过分强调教学的规律性和原则性,教学内容追求逻辑的严谨性和体系的形式化。数学知识以基本知识、基本技能的形式呈现,忽视了数学的工具性、语言性、文化性、创造性。在数学的教育功能方面,教师的教学目标和学生的学习目标偏向应付考试,课堂教学以教师为中心,缺乏学生主动参与。教师对于课堂教学中的突况缺乏灵活性,数学教学显得呆板。

(二)能力和技能范式视角下的中学数学教学能力和技能

范式的理论基础是行为主义心理学中关于教育目标的具体化和教学行为的可观察性思想。在数学教学中体现在两个方面:一是数学教学目标是培养学生的数学能力和解题的技巧技能。前苏联心理学家克鲁切茨基在长达11年(1956年至1967年)的实验中对课堂教学中能力和技能的培养阶段概括为“信息收集阶段、信息加工阶段、信息保持阶段”[3]。这三个阶段在数学教学中具体体现为:信息收集阶段:在数学教学中数学能力不同的学生对教学中数学知识点感知的信息不同,如在数学解题中数学能力强的学生可从题目给出的已知条件中最大限度地读取对解题有用的信息。信息加工阶段:在数学课堂教学中体现为数学概括能力、运算能力、推理能力、发散思维能力。信息保持阶段:数学能力较强的学生能够对数学知识点的应用,解题过程中对问题分析解答的方式、推理的概要、证明的逻辑等都善于归纳总结,并保持长久记忆。二是师资的要求上认同教师专业化理念。作为中学数学教师必须经过严格的专业学习和训练,掌握数学教学的基本知识和基本理论以及相应的基本能力和技能。能力和技能教学范式的缺点体现在以下三个方面:在教学内容方面:由于数学教学目标技能化,教师在教学内容的处理上忽视数学知识的整体性、系统性、结构性,为了便于技能的教学,将数学知识分解为若干个知识点,而每一个知识点又以技能的方式展现给学生;在教学内容中丢弃了数学思想、数学方法、数学文化等这样的隐性知识。在数学教学方面:可以看出能力和技能范式视角下的数学教学是以培养学生扎实的数学技能,数学教学降格为技能训练。教师在教学时忽视了数学知识的形成发展过程,重视学生的模仿性再现性思维,忽视独立性、创造性思维,缺少对态度、情感、价值观的关注。在学生学习方面:数学课堂上主要进行技能训练,缩短了学生思维发展的时间和空间;学生学习过程就是强制的、单调的、枯燥的解题训练;学生对数学的学习模式化、程序化、机械化。

(三)系统范式视角下的中学数学教学

数学教育理论研究中“教学是一个系统”是受到其他科学领域在方法论方面的影响形成的,其中最重要的是21世纪的系统论、控制论、信息论。“三论”不是“研究具体的物质形式或对象,而是为揭示一切系统的共同现象,提出新思路、新方法的综合理论。“三论”的基本原理有:整体原理、有序原理、反馈原理[4](P58-59)。具体来说:把数学教学过程看作是一个系统,把教师、学生、教学内容、教学方法等影响教学的要素看成整个系统的子系统。“三论”的基本原理描绘出整个数学教学过程的结构及影响数学教学过程的各要素所处的地位、相互关系和流动方向,并通过分析促进其达到最优化。整体原理:数学教学系统的整体功能要提高各子系统的协调功能,使各子系统和谐优化。系统整体的功能等于各子系统功能之和与各子系统相互联系产生的功能代数和,即“E整=∑E部+E联(E联>0或E联<0)"[4](P233-234)。因此,教学设计、教学实施等过程是由多种因素共同作用的结果,要提高数学教学质量就要避免出现孤立、单一的分析,要综合考虑到学生、教师、教学内容、教学手段、教学环境等因素的影响,即要优化各个子系统及相互联系。有序原理:在数学教学中所谓的有序是指教师在课堂教学中对知识点和例题讲解是清楚的、学生容易理解的。对学生而言学习到的数学知识是可理解的、会应用的。反馈原理:数学课堂教学有三种反馈形式:(1)教和学的反馈。学生对教师提供的信息感知接受并反馈给教师,教师再根据学生反馈的信息对教学程序进行调整纠正,控制教学过程。如根据学生课堂回答问题的情况对教学节奏作出调整。(2)教师自我反馈。在课堂教学中教师将知识信息、学生的反馈信息、外界干扰信息进行加工处理,再以知识信息和控制信息的形式输出。(3)学生的自我反馈。对课堂上教师所讲的数学知识的感知理解重组并输出(课堂回答问题,课堂练习),通过教师的评价知道正确与否的过程。因此要提高数学教学的质量就要使这三种反馈形式相互配合,有效控制教学系统,加强师生的信息加工能力和信息反馈。虽然系统教学范式有利于教学的设计和实施,但是由于过分强调教学中各个因素对教学的影响,在教学设计和实施中忽视了一切偶然性的因素对教学的影响,也忽视了教学的本质如数学教学的目标及数学学科教学的特殊性;另外系统范式视角下的数学教学缺少灵活性和预知性。

(四)艺术范式视角下的中学数学教学

数学教学是一门艺术,这个结论自古以来就得到人们的普遍认同。在公元前6世纪,古希腊毕达哥拉斯学派认为:“对几何形式和数字关系的沉思达到精神上的解脱,数学和音乐被看作是净化灵魂从而达到解脱的手段。”俄国教育家乌申斯基认为:“教学的艺术胜于科学本身。”现代的教育教学理论认为教师和学生作为教学中的两大主体,要以艺术的眼光去感知、欣赏、思考教学活动。艺术范式视角下的中学数学教学体现在以下两个方面:(1)教学层面:在数学教学中教师不是简单地复述教材内容,而是依据学生的理解能力、思维能力、想象能力对数学知识“进行重组和演化,对教学方式进行设计和选择"[5]。在数学课堂教学中强调灵活性和创造性,关注学生的情感。(2)教师层面:要求数学教师有扎实基本功,在具体数学知识的教学中充满艺术的感染力;同时教师通过敏锐的观察及依据课堂教学中学生反馈信息的多样性和随机性,对教学内容、教学节奏作出准确的判断,进而及时作出调节;此外教师要有个人教学风格,与学生在教学活动中能够默契地配合,使数学教学活动不仅是数学知识、数学思想的交流,同时也是数学美和数学艺术的交流。艺术范式视角下的数学教学不仅是数学基本知识、基本技能的学习过程,也是艺术的创造过程、审美过程。教师通过创造性的教学设计使学生能够感受数学特有的艺术魅力。但艺术教学范式的不足也显而易见:由于过分强调灵活性和创造性,忽视了数学教学的基本规律和程序性,数学课堂教学中,如果教师不能很好地监控,往往会出现学生的纪律性差、无视课堂规则、自由主义倾向严重等问题。

(五)反思范式视角下的中学数学教学

教学的反思范式最早是美国教育哲学家杜威在1933年HowWeThink一书中关于反省性思维的论述中提出的。到20世纪80年代在基础教育课程改革和教师专业化运动中得到关注和提倡,并从认知心理学、认知论哲学等角度对其在理论上进行了扩展。反思范式视角下的教学是追求以实践合理性为目标的教学活动,“是教师和学生对数学教学过程和结果的自我觉察、自我评价、自我探究、自我监控、自我调节"[6]。反思的目标是消除困惑,促进实践。数学教学活动是一种思维活动,师生在课堂教学的反思随时存在。反思范式视角下的中学数学教学的基本特征是:学会学习,学会教学。学会学习:在数学学习中由“操作性学习方式转化为反思性学习方式”[7]。学生在听课过程中对数学知识、数学思想方法、解题思路、计算或证明过程、问题分析方式等进行反思,并对自己的学习情况作出监控、调节、评价,进而达到较好的学习效果。学会教学:通过反思性教学使教师由经验型教师转化为反思性教师,促进教师专业化发展。行动研究是数学教师专业化发展的有效途径,而教学中的反思则是教师行动研究的中心内容。反思性教学是连接理论和实践的桥梁,教师教学思想的形成是结合教学实践对自己已有的教学经验、教学理论的再思考。教师只有对正在发生的教学行为、教学的有效性和合理性不断反思,进而对下一步的教学进行修正,才能达到最佳教学效果。教师也会在此过程中逐渐形成自己的教学风格,成为专业化教师。反思性教学范式将数学教学的目标异化为学习能力,虽然这是数学教学目标的能力之一,但忽视了数学教学中如基本知识和基本技能的学习及学生情感、价值观的培养等主要目标。另外,也没有一定的评价标准来界定反思的程度。

篇5

案例:“我”在某市购物,甲商店提出的优惠销售方法是所有商品按九五折销售,而乙商店提出的优惠方法是凡一次购满500元可领取九折贵宾卡。请同学们帮老师出出主意,“我”究竟该到哪家商店购物得到的优惠更多?问题提出后,学生们十分感兴趣,纷纷议论,连平时数学成绩较差的学生也跃跃欲试。学生们学习的主动性很好地被调动了起来。活势形成,学生们在不知不觉中运用了分类讨论的思想方法。

曾有人说:“数学是思维的体操”。数学教学是思维活动的教学。学生的思维活动有赖于教师的循循善诱和精心的点拨和启发。因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明:不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问、幽默,还是欣喜、竞争,都应考虑活动的启发性,孔子曰:“不愤不启,不悱不发”,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。

二、强化感受性:

情境教学往往会具有鲜明的形象性,使学生如入其境,可见可闻,产生真切感。只有感受真切,才能入境。要做到这一点,可以用创设问题情境来激发学生求知欲。创设问题情境就是在讲授内容和学生求知心理间制造一种“不和谐”,将学生引入一种与问题有关的情境中。心理学研究表明:“认知矛盾时动机的根源。”课堂上,教师创设认知不协调的问题情境,以激起学生研究问题的动机,通过探索,消除剧烈矛盾,获得积极的心理满足。创设问题情境应注意要小而具体、新颖有趣、有启发性,同时又有适当的难度。此外,还要注意问题情境的创设必须与课本内容保持相对一致,更不能运用不恰当的比喻,不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。

案例:在对“等腰三角形的判定”进行教学设计时,教师可以通过具体问题的解决创设出如下诱人的问题情境:

在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下了一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形重新画出来?学生先画出残余图形并思索着如何画出被墨水涂没的部分。各种画法出现了,有的学生是先量出∠C的度数,再以BC为一边,B点为顶点作∠B=∠C,B与C的边相交得顶点A;也有的是取BC中点D,过D点作BC的垂线,与∠C的一边相交得顶点A,这些画法的正确性要用“判定定理”来判定,而这正是要学的课题。于是教师便抓住“所画的三角形一定是等腰三角形吗?”引出课题,再引导学生分析画法的实质,并用几何语言概括出这个实质,即“ABC中,若∠B=∠C,则AB=AC”。这样,就由学生自己从问题出发获得了判定定理。接着,再引导学生根据上述实际问题的启示思考证明方法。

除创设问题情境外,还可以创设新颖、惊愕、幽默、议论等各种教学情境,良好的情境可以使教学内容触及学生的情绪和意志领域,让学生深切感受学习活动的全过程并升化到自己精神的需要,成为提高课堂教学效率的重要手段。这正象赞可夫所说的:“教学法一旦触及学生的情绪和意志领域,这种教学法就能发挥高度有效的作用。”

三、着眼发展性:

数学是一门抽象和逻辑严密的学科,正由于这一点令相当一部分学生望而却步,对其缺乏学习热情。情境教学当然不能将所有的数学知识都用生活真实形象再现出来,事实上情境教学的形象真切,并不是实体的复现或忠实的复制、照相式的再造,而是以简化的形体,暗示的手法,获得与实体在结构上对应的形象,从而给学生以真切之感,在原有的知识上进一步深入发展,以获取新的知识。

案例:在学习完了平行四边形判定定理之后,如何进一步运用这些定理去判定一个四边形是否为平行四边形的习题课上.我先带领学生回顾平行四边形的定义以及四条判定定理:

1、平行四边形定义:两组对边分别平行的四边形是平行四边形。

2、平行四边形判定定理:

(1)两组对边分别相等的四边形是平行四边形。

(2)对角线相互平分的四边形是平行四边形。

(3)两组对角分别相等的四边形是平行四边形。

(4)一组对边平行且相等的四边形是平行四边形。

分析从这五条判定方法结构来看,平行四边形定义和前三条判定定理的条件较单一,或相等、或平行,而第四条判定定理是相等与平行二者兼有,如果将它看作是定义和判定(1)中各取条件的一部分而得出的话,那么从定义和前三条判定定理中每两个取其中部分条件是否都能构成平行四边形的判定方法呢?这样我创设了情境,根据对第四条判定定理的剖析,使学生用类比的方法提出了猜想:

1.一组对边平行且另一组对边相等的四边形是平行四边形。

2.一组对边平行且一组对角相等的四边形是平行四边形。

3.一组对边平行且对角线交点平分某一条对角线的四边形是平行四边形。

4.一组对边相等且对角线交点平分某一条对角线的四边形是平行四边形。

5.一组对边相等且一组对角相等的四边形是平行四边形。

6.一组对角相等且连该两顶点的对角线平分另一对角线的四边形是平行四边形。

7.一组对角相等且连该两顶点的对角线被另一对角线平分的四边形是平行四边形。

在启发学生得出上面的若干猜想之后,我又进一步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维能力的目的,要求学生用所学的5种判定方法去一一验证这七条猜想结论的正确性。

经过全体师生一齐分析验证,最终得出结论:七条猜想中有四条猜想是错误的,另外三个正确猜想中的一个尚待给予证明。学生在老师的层层设问下,参与了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察、猜想、分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知识得到了进一步发展。

四、渗透教育性:

教师要传授知识,更要育人。如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现。法国著名数学家包罗•朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华民族有着光辉灿烂的数学史,如果将数学科学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱科学,学科学的良好风气有着重要作用。

教师应根据教材特点,适应地选择数学科学史资料,有针对性地进行教学

案例:圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:最初一些文明古国均取π=3,如我国《周髀算经》就说“径一周三”,后人称之为“古率”。人们通过利用经验数据π修正值,例如古埃及人和古巴比伦人分别得到π=3.1605和π=3.125。后来古希腊数学家阿基米德(公元前287~212年)利用圆内接和外接正多边形来求圆周率π的近似值,得到当时关于π的最好估值约为:3.1409<π<3.1429;此后古希腊的托勒玫约在公元150年左右又进一步求出π=3.141666。我国魏晋时代数学家刘微(约公元3~4世纪)用圆的内接正多边形的“弧矢割圆术”计算π值。当边数为192时,得到3.141024<π<3.142704。后来把边数增加到3072边时,进一步得到π=3.14159,这比托勒玫的结果又有了进步。待到南北朝时,祖冲之(公元429~500年)更上一层楼,计算出π的值在3.1415926与3.1415927之间。求出了准确到七位小数π的值。我国的这一精确度,在长达一千年的时间中,一直处于世界领先地位,这一记录直到公元1429年左右才被中亚细亚的数学家阿尔•卡西打破,他准确地计算到小数点后第十六位。这样可使同学们明白,人类对圆周率认识的逐步深入,是中外一代代数学家不断努力的结果。我国不仅以古代的四大发明-------火药、指南针、造纸、印刷术对世界文明的进步起了巨大的作用,而且在数学方面也曾在一些领域内取得过遥遥领先的地位,创造过多项“世界纪录”,祖冲之计算出的圆周率就是其中的一项。接着我再说明,我国的科学技术只是近几百年来,由于封建社会的日趋没落,才逐渐落伍。如今在向四个现代化进军的新中,赶超世界先进水平的历史重任就责无旁贷地落在同学们的肩上。我们要下定决心,努力学习,奋发图强。

为了使同学们认识科学的艰辛以及人类锲而不舍的探索精神,我还进一步介绍:同学们都知道π是无理数,可是在18世纪以前,“π是有理数还是无理数?”一直是许多数学家研究的课题之一。直到1767年兰伯脱才证明了是无理数,圆满地回答了这个问题。然而人类对于π值的进一步计算并没有终止。例如1610年德国人路多夫根据古典方法,用262边形计算π到小数点后第35位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在它的墓碑上。至今圆周率被德国人称为“路多夫数”。1873年英国的向客斯计算π到707位小数,1944年英国曼彻斯特大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决定重新算一次。他从1944年5月到1945年5月用了一整年的时间来做这项工作,结果发现向克斯的707位小数只有前面527位是正确的。后来有了电子计算机,有人已经算到第十亿位。同学们要问计算如此高精度的π值究竟有什么意义?专家们认为,至少可以由此来研究π的小数出现的规律。更重要的是对π认识的新突破进一步说明了人类对自然的认识是无穷无尽的。几千年来,没有哪一个数比圆周率π更吸引人了。根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断加深的过程也是学生深受感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。

五、贯穿实践性:

情境教学注重“情感”,又提倡“学以致用”,努力使二者有机地统一起来,在特定的情境中和热烈的情感驱动下进行实际应用,同时还通过实际应用来强化学习成功所带来的快乐。数学教学也应以训练学生能力为手段,贯穿实践性,把现在的学习和未来的应用联系起来,并注重学生的应用操作和能力的培养。我们充分利用情境教学特有的功能,在拓展的宽阔的数学教学空间里,创设既带有情感色彩,又富有实际价值的操作情境,让学生扮演测量员,统计员进行实地调查,搜集数据,制统计图,写调查报告,其教学效果可谓“百问不如一做”,学生产生顿悟,求知欲得到满足更加乐意投入到新的学习情境中去了。同时对学生思维能力、表达能力、动手能力、想象能力、提出问题和解决问题的能力,甚至交际能力、应变能力等等,都得到了较好的培养和训练。

案例:“三角形内角和定理”就可以通过实践操作的办法来创设教学情境。学生的认知结构中,已经有了角的有关概念,三角形的概念,还具有同位角、内错角相等等有关平行线的性质。这些都是学习新知识的“固着点”,但由于它们与“三角形内角和定理”之间的逻辑联系并不十分明显,大部分同学都难以想到要对三角形的三个内角之和进行一番研究,这种情况下,我们可以创设这样的数学情境:首先,在回顾三角形概念的基础上,提出:“三角形的三个内角会不会存在某种关系呢?”这是纲领性提问,对学生的思维还达不到确定的导向作用,学生可能会对角与角的相等、不等、两角之和(差)与第三个角的大小比较等等问题进行研究,当发现这些问题只对某些特殊三角形有意义时,他们的思维可能会指向“三个内角的和是否有一定的规律?”我适时地提出:“请同学们画一些三角形(包括锐角、直角、钝角三角形),再用量角器量出三个角,观察一下各三角形的三个内角有什么联系。”经测量、计算,学生发现三个内角的和都在180°左右。我再进一步提出:“由于具体测量会有误差,但和数都在180°左右,三角形的三个内角之和是否为180°呢?请同学们把三个角拼在一起,看一看,构成了一个怎样的角?”学生在完成这一实验后发现,三个内角拼在一起构成一个平角。经过上述两步实验,提出“三角形的三个内角之和为180°”的猜想就水到渠成了。接着,我指出了实验操作的局限性,并要求学生给出严格的逻辑证明。在寻找证明方法时,我提出:“观察拼接图形,从中能得到什么启示?”学生可凭借实践操作时的感性经验,找到证明方法。实践操作不但使学生获得了定理的猜想,而且受到了证明定理的启发,显示了很大的智力价值。又如:我在初三复习列方程解应用题时,为了让学生明白学数学的主要目的是要培养思维和掌握解决问题的能力,在课的最后出了一道开放型命题:

将一个50米长30米宽的矩形空地改造成为花坛,要求花坛所占的面积,恰为空地面积的一半。试给出你的设计方案(要求:美观,合理,实用,要给出详细数据)。这题是一道中考题,是应用数学的典型实例,既培养学生解决问题的能力又开发他们的创新思维。学生讨论得十分激烈,不断有新的创意冒出来,有的因无法操作而被别人否定,也有不少十分不错的设想。通过这次讨论,我觉得每个学生都是有潜力可挖的,解决问题的能力虽有强弱,但我们教师更应该多培养多点拨多激励,以增强学生学习数学的自信心。

创设情境教学的主要方式

一,创设应用性情境,引导学生自己发现数学命题(公理、定理、性质、公式)

案例1在“均值不等式”一节的教学中,可设计如下两个实际应用情境,引导学生从中发现关于均值不等式的定理及其推论.

①某商店在节前进行商品降价酬宾销售活动,拟分两次降价.有三种降价方案:甲方案是第一次打p折销售,第二次打q折销售;乙方案是第一次打q折销售,第二次找p折销售;丙方案是两次都打(p+q)/2折销售.请问:哪一种方案降价较多?

②今有一台天平两臂之长略有差异,其他均精确.有人要用它称量物体的重量,只须将物体放在左、右两个托盘中各称一次,再将称量结果相加后除以2就是物体的真实重量.你认为这种做法对不对?如果不对的话,你能否找到一种用这台天平称量物体重量的正确方法?

学生通过审题、分析、讨论,对于情境①,大都能归结为比较pq与((p+q)/2)2大小的问题,进而用特殊值法猜测出pq≤((p+q)/2)2,即可得p2+q2≥2pq.对于情境②,可安排一名学生上台讲述:设物体真实重量为G,天平两臂长分别为l1、l2,两次称量结果分别为a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,两式相乘,得G2=ab,由情境①的结论知ab≤((a+b)/2)2,即得(a+b)/2≥,从而回答了实际问题.此时,给出均值不等式的两个定理,已是水到渠成,其证明过程完全可以由学生自己完成.

以上两个应用情境,一个是经济生活中的情境,一个是物理中的情境,贴近生活,贴近实际,给学生创设了一个观察、联想、抽象、概括、数学化的过程.在这样的问题情境下,再注意给学生动手、动脑的空间和时间,学生一定会想学、乐学、主动学.

二,创设趣味性情境,引发学生自主学习的兴趣

案例2在“等比数列”一节的教学时,可创设如下有趣的情境引入等比数列的概念:

阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当它追到1里处时,乌龟前进了1/10里,当他追到1/10里,乌龟前进了1/100里;当他追到1/100里时,乌龟又前进了1/1000里……

①分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;

②阿基里斯能否追上乌龟?

让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,很快就进入了主动学习的状态.

三,创设开放性情境,引导学生积极思考

案例3直线y=2x+m与抛物线y=x2相交于A、B两点,________,求直线AB的方程.(需要补充恰当的条件,使直线方程得以确定)

此题一出示,学生的思维便很活跃,补充的条件形形.例如:

①|AB|=;②若O为原点,∠AOB=90°;

③AB中点的纵坐标为6;④AB过抛物线的焦点F.

涉及到的知识有韦达定理、弦长公式、中点坐标公式、抛物线的焦点坐标,两直线相互垂直的充要条件等等,学生实实在在地进入了“状态”.

四,创设直观性图形情境,引导学生深刻理解数学概念

案例4“充要条件”是高中数学中的一个重要概念,并且是教与学的一个难点.若设计如下四个电路图,视“开关A的闭合”为条件A,“灯泡B亮”为结论B,给充分不必要条件、充分必要条件、必要不充分条件、既不充分又不必要条件以十分贴切、形象的诠释,则使学生兴趣盎然,对“充要条件”的概念理解得入木三分.

五,创设新异悬念情境,引导学生自主探究

案例5在“抛物线及其标准方程”一节的教学中,引出抛物线定义“平面上与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线”之后,设置这样的问题情境:初中已学过的一元二次函数的图象就是抛物线,而今定义的抛物线与初中已学的抛物线从字面上看不一致,它们之间一定有某种内在联系,你能找出这种内在的联系吗?

此问题问得新奇,问题的结论应该是肯定的,而课本中又无解释,这自然会引起学生探索其中奥秘的欲望.此时,教师注意点拨:我们应该由y=x2入手推导出曲线上的动点到某定点和某定直线的距离相等,即可导出形如动点P(x,y)到定点F(x0,y0)的距离等于动点P(x,y)到定直线l的距离.大家试试看!学生纷纷动笔变形、拚凑,教师巡视后可安排一学生板演并进行讲述:

x2=y

x2+y2=y+y2

x2+y2-(1/2)y=y2+(1/2)y

x2+(y-1/4)2=(y+1/4)2

=|y+14|.

它表示平面上动点P(x,y)到定点F(0,1/4)的距离正好等于它到直线y=-1/4的距离,完全符合现在的定义.

这个教学环节对训练学生的自主探究能力,无疑是非常珍贵的.

六,创设疑惑陷阱情境,引导学生主动参与讨论

案例6双曲线x2/25-y2/144=1上一点P到右焦点的距离是5,则下面结论正确的是().

A.P到左焦点的距离为8

B.P到左焦点的距离为15

C.P到左焦点的距离不确定

D.这样的点P不存在

教学时,根据学生平时练习的反馈信息,有意识地出示如下两种错误解法:

错解1.设双曲线的左、右焦点分别为F1、F2,由双曲线的定义得

|PF1|-|PF2|=±10.

|PF2|=5,

|PF1|=|PF2|+10=15,故正确的结论为B.

错解2.设P(x0,y0)为双曲线右支上一点,则

|PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,

|PF1|=ex0+a=15,故正确结论为B.

然后引导学生进行讨论辨析:若|PF2|=5,|PF1|=15,则|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,这与三角形两边之和大于第三边矛盾,可见这样的点P是不存在的.因此,正确的结论应为D.

进行上述引导,让学生比较定义,找出了产生错误的在原因即是忽视了双曲线定义中的限制条件,所以除了考虑条件||PF1|-|PF2||=2a,还要注意条件a<c和|PF1|+|PF2|≥|F1F2|.

通过上述问题的辨析,不仅使学生从“陷阱”中跳出来,增强了防御“陷阱”的经验,更主要地是能使学生参与讨论,在讨论中自觉地辨析正误,取得学习的主动权.

总之,切实掌握好创设情境教学的原则、重视创设情境教学过程的特性,合理应用创设情境教学的方式,充分重视“情境教学”在课堂教学中的作用,通过精心设计问题情境,不断激发学习动机,使学生经常处于“愤悱”的状态中,给学生提供学习的目标和思维的空间,学生自主学习才能真正成为可能.在日常的教学工作中,不忘经常创设数学情境,引导学生自主学习,动机、兴趣、情感、意志、性格等非智力因素起着关键的作用.把智力因素与非智力因素有机地结合起来,充分调动学生认知的、心理的、生理的、情感的、行为的、价值的等方面的因素,让学生进入一种全新的情境境界,学生自主学习才能达到比较好的效果.这就需要在课堂教学中,做到师生融洽,感情交流,充分尊重学生人格,关心学生的发展,营造一个民主、平等、和谐的氛围,在认知和情意两个领域的有机结合上,促进学生的全面发展.内容提要:本文着重阐述了中学数学素质教学中的情境教学的创设情境的五个原则,创设情境教学过程五个方面的特性,创设情境教学的七种主要方式,并通过大量的案例展示分析,揭示了中学数学素质教学中的情境教学的意义。

关键词:创设情境教学原则特性方式案例

课堂教学是实施素质教学的主阵地,提高学生的素质是课堂教学的重要内容,怎样将“应试教育”向“素质教育”转轨,怎样变单纯的“知识输入”为“能力培养、智力开发”,如何大面积提高中学的数学教学质量,这是摆在我们广大数学教师面前的一个重大课题。在众多教学改革的原则中,主体性是素质教育的核心和灵魂.在教学中要真正体现学生的主体性,就必须使认知过程是一个再创造的过程,使学生在自觉、主动、深层次的参与过程中,实现发现、理解、创造与应用,在学习中学会学习.使学生产生明显的意识倾向和情感共鸣,乃是主体参与的条件和关键.

参考文献:

1、皮连生《学与教的心理学》(华东师范大学出版社1997年)

2、柳斌《学校教育科研全书》(九州图书出版社,人民日报出版社1998年)

3、肖柏荣《数学教育设计的艺术》(《数学通报》1996年10月)

4、章建跃《关于课堂教学中设置问题情境的几个问题》(《数学通报》1994年6月)

5、盛志军《今天,我没有完成授课计划》(《数学教学》2004年第11期)

篇6

研究对象选择我任教的江苏省射阳实验中学的初一(11)班、(14)班,两个班级为平行班,均有60人,共有120人被试。两个班级人数、性别以及原有的兴趣水平基本相当,无明显差异。两个班级的学生入学成绩没有明显偏差,数学教学所采用的教材和教师均相同。

(二)研究方法

初一(11)班作为实验组,采用情景教学模式,极力采用创设有效数学情境的教学策略进行教学,精心设计各种数学情境,激发兴趣,引导探究;初一(14)班作为对照组,采用传统教学模式。教学有效性通过两个方面来评价:分别是这一阶段的数学学习成绩和数学兴趣水平。第一次对比是在半个学期的数学课堂情境教学,通过期中考试测试,第二次对比是在整个学期结束后,利用期末考试进行测试。成绩测试和调查在内容、时间、方式上相同。数学学习成绩通过数学考试,实验组和对照组采用相同的数学试卷,并且用统一的评分标准进行统一阅卷。数学兴趣水平则通过我自己设计的数学学习兴趣问卷调查表来测试。此表根据初中学生特点共设计了10道题,主要调查学生对数学的认识,对数学以及数学课的兴趣,对数学及数学作业的态度,学习数学的焦虑程度。被调查学生根据题中所叙述的内容与自己的相应情况,按是否进行判定,分别赋分值1或是0,通过累计总分,来反映学生对数学课堂教学的兴趣变化。

二、研究结果与分析

(一)数学学习成绩对比分析

在完成期中和期末两次数学考试后,统计两个班级的考试成绩。分别从平均分、及格率和优秀率三个方面进行对比。从两次考试前后成绩整体来看,每个班级的成绩均有提高,可能由于试卷难易度的影响或其他原因导致。第一次测试结果说明:经过半个学期的不同方式的教学行为的实施,两个班的平均分成绩已经开始有差别,及格率和优秀率也开始有区别;等到整个学期结束后,第二次测试结果,已经可以发现实验班明显高于对照班,无论是平均分,或及格率和优良率的对照。说明经过一个学期的创设情境教学的实验干预以后,实验班的成绩大幅攀升,明显好于对照班,创设良好情境教学对于提高学生成绩非常有效。

(二)数学学习兴趣对比分析

在两个班级的学生入学时学习水平和兴趣水平相对均衡的情况下,经过一个学期的学习之后,发放《数学学习兴趣问卷调查表》,实验班60份,对照班60份,指导学生填写并且全部有效回收。测试卷按照学生实际情况评判,累计总分后求平均数,以此反映检测学生的兴趣水平的差异情况。测试结果显示了实验班和对照班的显著差异。期中阶段,实验班学生的学习兴趣已经开始优于对照班,到了期末阶段,实验班的学习兴趣已经明显好于对照班,并且兴趣提高的幅度也高于对照班。因而可以认定经过一个学期的情境教学试验后,实验班的数学兴趣水平显著提高。

三、提高初中数学教师教学行为有效性的建议

通过以上的研究发现,基于学生的年龄特征,在初中数学教学中实施情境教学具有比较高的有效性,在提高学习成绩的同时也很受学生的喜爱,教师更应基于情景教学理论,投入时间和精力,开发高质量的有效数学情境,提高学生数学能力和促进教学质量,寻找提高初中数学教师教学行为有效性的策略。

(一)教学行为有效性意识

作为初中数学教师,我们在实施教学行为过程中,应当具有有效性意识。教师应该具有“学习时间有限”的意识,也就是说,提高初中生学习有效性不能单独依靠延长学习时间来进行。初中数学教师应该具有教学行为有效性的意识,提高时间效率的观念,将更多的时间留给学生进行自主学习,而不是去占用学生很多额外的学习时间,而且会把教学的重点放在提高每个学生的数学课堂学习时间的利用效率上。数学教师巧妙地将教学时间与学生主动学习时间有效结合起来,一方面加强了学生自主学习的能力,另一方面提高初中数学教学有效性,从而提高了课堂教学的质量。

(二)创设有效情境教学

作为初中数学教师,我们在课堂教学活动中,应该采用多种教学方式和多媒体信息等手段,用最短的时间、最高效的精力投入,取得最大化的教学效果,通过情境教学模式实现教学目标。数学教学情境的创设应以课堂教学目标的有效实现为着力点,有的放矢;要难度适宜,考虑到初中学生的特点,满足学生的挑战性与可及性,做到能激活学生自主思维,同时启发学生发现问题,解决问题,激发起主动学习的动力;要注意各个学习阶段,向学生创设不同的问题情境,教学情境的设置要具有新意,既可以满足不同教学目标的要求,又能保持吸引学生的注意力。

(三)激发学习主体能动性

新课改指出,数学教学应由重“教”转向重“学”,在课堂教学过程中,教师要注重学生的“学”,变“教”为“学”。作为初中数学教师,我们在课堂教学活动中,应该将激发学生学习主体能动性作为教学行为的目的之一。初中数学教师授课过程中应具有灵活性,照本宣科是不负责任的行为。教师应改变“主体”意识,将课堂教学过程的主角交给学生。通过改变教学方式,让学生积极主动参与课堂讨论并积极发言,教学过程气氛宽松、自然,使学生愿意主动地将自己的想象力、语言能力、思维力参与进去,教师不断改进授课方式,使初中数学课堂真正变成学生的课堂。在数学课堂上,学生能够真正体会到学习的乐趣,也培养了学生的自主意识和创新意识。

篇7

在数学教学中,传授知识只是其中的一部分,更需要教师注重的是使学生能够独立思考,培养学生发现问题、解决问题的能力,从而使其数学能力得到发展.例如,在概念教学过程中,教师应首先将产生概念的背景介绍给学生,努力营造一个需要形成概念的情境,学生就可以自己将某类事物的本质属性完整地概括出来,并通过恰当的词语来进行表述.

2.对学生的人格成长有所启发

在数学史中,任何一项伟大的成就都需要付出艰苦卓绝的努力.例如,南北朝时期著名的数学家祖冲之,利用刘徽割圆术,将圆周率精确计算到第七位有效数字.数学家这种刻苦钻研、持之以恒的精神能够对学生的人格成长大有启发,能够引导学生树立学习数学的自信心,对待挫折坚忍不拔,对待困难迎难而上,不畏挫折,不惧失败.

3.有利于训练学生的逻辑思维

中国的教育制度一直处在不断的改革完善中,对人才的培养也是越来越全面、越来越严格.目前而言,“应试教育”已经明显存在缺陷.素质高能力强的人明显是被需要的,这时学会如何学习显得尤为重要.“数学是思维的体操.”也许说思维是不可碰触的、无形的,但是一旦形成就是一种能力,它不会戛然而止,它是一种会伴随我们一生的素质.

二、数学文化在高中数学教学中的渗透策略

1.讲述数学史,展现数学文化的科学价值

在课堂教学过程中,教师可以讲述数学成就在人类发展史中的巨大作用、数学家探求真理坚持不懈的精神、思想方法的应用、知识产生的历史背景等内容,从而使得学生能够感受到数学大厦建造伟大而精彩的历程.例如,在讲解完“合数”与“素数”的知识之后,教师可以对“哥德巴赫猜想”进行介绍.除此之外,教师应合理地划分课堂教学时间,适当地减少考试以及机械的解题练习,而腾出一定的时间用于讲解数学史.例如,在讲解“圆柱体积计算公式”的时候,教师可以先介绍曹冲称象的典故,激发学生学习兴趣,引导学生积极思考.

2.欣赏数学美,展现数学文化的美学价值

数学美是一种抽象的美,能够体现数学文化,使人感受到数学的魅力.数学的美是含蓄的、内在的、理性的,并且无处不在.在很多美好的事物背后都会隐藏着一些数学的奥秘.在高中数学教学过程中,教师可以充分利用数学公式、数学逻辑、数学符号、数学图形等的简洁美、统一美、奇艺美、对称美来陶冶学生情操,发挥数学的美育功能.例如,和谐统一美可以在相似三角形中体现出来.相似三角形,不论其大小,都被看作同一类几何图形.简洁美则在命题表述与论证、数学符号、数学逻辑体系中均有所体现.发挥数学的美学价值不仅仅是将其展现给学生,更重要的是使得学生能够发现数学美、欣赏数学、热爱数学.高中数学教师也应提升自身美学修养,引导学生利用数学美陶冶情操,从而达到数学的文化教育的目的.

3.在问题情景中渗透数学文化

在学习数学的时候,我们常常被枯燥而又复杂难懂的公式弄得苦不堪言.若是能在教学的时候从历史的角度介绍数学公式产生的背景,或从现实的角度阐述数学知识的现实经济意义,或是用图形等数学知识进行推导,这样可以化抽象为形象,使知识点变得通俗易懂,做到事半功倍.好比圆周率π,一个出现于公元前950年的数字,自有记载而来就引起了国内外的关注.我们现在知道的π的值已经是非常精确的估计值,但它的发展历程是非常坎坷的,从古至今,从国内到海外,从珠算到计算机,一代又一代的数学家为了最大限度地求其估计值而努力,即使如此,数学家探索的步伐还在继续.

4.在课外活动中渗透数学文化

数学学习的环境是广阔的,它不该局限于课堂.数学的学习方式也是灵活的,它不该局限于做题.老师们可以通过组织竞赛、演讲等形式调动学生们学习的主动性,学生们亦可在查阅、收集、整理资料的过程中丰富课余生活,同时巩固课堂上学到的知识.

5.在研究下学习中渗透数学文化

现在社会越来越主张和提倡独立和创新,鼓励人们大胆地质疑和探究.研究性学习是一种非常重要的学习方式,它虽然出现得比较晚,但它的开放性、创造性等独有的特性引起了广泛的关注,尤其受广大师生的欢迎,他们常借此方式来渗透数学文化.经过对研究性学习的研究,教会学生们发现问题、解决问题,将所思所想化为实际行动.这是一次学习知识的过程,也是自我增值的过程.

篇8

二、充分将数学文化和小学数学教材有机结合

在小学数学课本中,为了能够让小学生提高对数学的兴趣,其中往往会增设部分与数学有关的趣闻等内容。小学数学教师利用一个奇妙的故事首先吸引学生的好奇心,再一步步引导学生进入数学世界,在知识的海洋中探索知识。这不仅提高了学生的数学兴趣,还锻炼了学生的思维能力。在小学数学教学中蕴含着许多的数学历史,以数学历史为主线可以让学生零散的知识点联系起来。在整个数学教学过程中,归纳、类比等都是较为常见的数学方法。教师在进行课前备课时,要充分理解教材编纂的用意,要运用最恰当的数学方法培养小学生良好的数学文化素养。例如,在苏教版小学数学教材中《认识万以内的数》中就增设了算盘的相关内容,介绍了算盘是我国古代劳动人民发明的一种计算工具,在2600多年以前我国人民就利用算盘进行记数和计算,并且陆续传入日本、朝鲜等国家,这不仅加深了小学生对数学文化的认识,还潜在地提升了小学生的民族自豪感。又如,教师在讲《数一数》过程中,可以利用图片来激发小学生的学习兴趣。教师拿出一张动物园的图片,让学生进行归纳,图片中有多少种小动物,都有哪些种类的小动物,让小学生发言,在发言的过程中对回答得又快又准确的小朋友进行及时的表扬。在结束课堂教学进行总结时,教师告诉学生在进行数数时,可以从左往右数,也可以从右往左、从上到下或从下到上数,这样在数数的过程中就不会有遗漏了。整个课堂小学生不仅认识了各种小动物,还初步培养了学生的观察能力和学习数学的意识。

三、利用丰富的教学活动展现数学文化

对于小学生来说,增设丰富的教学活动能够较好地调动他们的课堂积极性,提高他们对数学的兴趣。教师通过了解小学生的兴趣爱好,发现小学生的兴趣导向,可以有针对性地开展教学活动,从而顺利进行数学教学。各种数学小游戏、数学趣闻故事、智力游戏和竞赛都是小学生感兴趣的活动。这些教学活动的开设都要结合小学生的身心特点,必须具有较大的吸引力,能够让学生在积极参与的过程中学习到数学知识,完成教学任务。如在苏教版第三单元《分一分》中,教师可以准备一些七巧板等,通过比赛的形式看哪位小朋友能够最快、最好地将不同形状的七巧板进行分类,通过分类的小游戏让学生认识到如何有规律地进行分类。又如小学数学教师播放《拍手儿歌》让学生认识前、后、左、右,然后提问“你前后左右的同学都是谁”,在这个过程中不仅能够保证教学任务的完成,还培养了小学生合作意识。

四、考试内容中融入数学文化

在考试内容中融入数学文化不仅能够较好地反馈学生数学知识的掌握程度,也能够进一步升华小学生对数学文化的理解。在考试内容设计的过程中,要摒弃传统的对数学知识点的考查,更多的是促进学生在思维能力方面的提升,帮助学生利用数学知识解决实际生活中的问题。在设计考试内容时,教师应该充分考虑将数学文化融入其中。比如在试卷中设计这样一道题:“小明帮助妈妈去买菜,白菜每斤2元4角,妈妈要求小明买两斤,小明应该付多少钱?”这种贴近生活的考试题目一方面可以反映出学生对知识的掌握程度,另一方面又培养了学生的生活能力。

篇9

Keywords:

ModernizationeducationaltechniqueHighschoolmathematicsteachingConformity

一、现代教育技术概述

所谓现代教育技术,就是“运用现代教育理论和现代信息技术,通过对教与学过程和资源的设计、开发、利用、评价和管理,以实现教学最优化为目标的理论和实践”。现代教育技术是现代教学设计、现代教学媒体和现代媒体教学法的综合体现,它以先进的现代教育思想、理论和方法为基础,以系统论的观点为指导,以计算机技术、数字音像技术、电子通讯技术、网络技术、卫星广播技术、远程通讯技术、人工智能技术、虚拟现实仿真技术、多媒体技术及信息高速公路等现代信息技术为手段,以实现教学过程、教学资源、教学效果、教学效益最优化为目的的一种教育技术。

现代教育技术与数学教学的整合,不是简单地将现代教育技术作为一种教学手段与传统数学教学手段的叠加,而是通过现代教育技术的介入,使数学教学中的各要素丰富和谐、协调共振,达到优化教学过程、教学资源、教学效果和教学效益,实现数学教学的突破与发展。具体地说,就是在先进教学思想(理论)的指导下,以丰富的信息资源为基础,以现代教育技术为支撑,从数学教学的整体观出发,立足于学生能力的发展,以思维训练为核心,通过学生自主探究、合作研讨、主动创新,增强获取知识的技能,满足兴趣、情感等方面的需要,实现数学素质和信息素养的提高。

下面本文将详细介绍现代化教育技术与数学教育整合教学模式中的“情景化”教育模式。

二、“情景化”教育模式

亲和的人际情境可以缩短学生与老师、学生与学生之间的距离,使学习在一个和谐的教学环境进行;生动的学习情境可以缩短学生与教学内容的心理距离,使学生形成最佳的情绪状态,主动投入,主动参与,获得主动发展。情境化学习(Situatedleanings)是当前盛行的建构主义学习的主要研究内容之一。

1.基本流程

“情境化”教学模式就是教师充分利用现代教育技术为学生创建或模拟一个探索数学知识的典型场景,利用生动、直观的形象有效地激发学生的学习情绪和联想,唤醒长期记忆中的有关知识、经验和表象,从而使学习者能利用自己原有认知结构中的有关知识与经验去同化当前学习到的新知识,赋予新知识以某种意义,把认知活动与情感活动结合起来,使学生的学习过程成为“数学家从己知到未知的探索过程”的一种教学模式。“情境化”教学模式的基本流程是:创设情景—明确问题—独立探索一一协作交流—归纳升华—强化训练—总结提炼。

2.教学策略

2.1设计教学情景

“情境化”教学模式的关键是创设“情境”。在数学教学过程中,教师要根据教材知识要点,善于运用现代教育技术创设以学生生活为素材或具有生活背景的、虚拟数学情境,把学生带入情境,在探究的乐趣中,激发学习动机,诱发主动性,把被动的学习变成像数学家探索数学奥秘那样的主动过程,自己亲自去探索数学知识和规律。

①创设“悬念”情境,激发学生主动思维

悬念,是一种学习心理机制,它是由学生对所学对象感到疑惑不解而又想解决时所产生的一种心理状态。悬念具有很大的诱惑力,可以激发起学生强烈、急切的思维欲望,有利于培养学生克服困难的意志力。

悬念的设置方法很多,若把悬念设置于课尾,具有“欲知后事如何,且听下回分解”的魅力,使学生感到余味无穷,从而激发起学生继续学习,思考的热情。同时,对学生的课外预习起了指导作用,使下一节课的教学水到渠成。

悬念设在课头,作为引入问题,可以给学生留下深刻持久的印象,同时也有助于激发学生的学习兴趣,有利于学生思维能力的培养和素质的提高。②创设矛盾情境,引发学生探索思维矛盾具有吸引人的魅力,它是激发学生产生活跃心理状态的最佳途径。有矛盾,才能使学生产生认知需要、认知冲突,从而引发学生积极的探索思维。③创设“趣味”情境,引导学生乐于思维

教师可以结合教学内容,通过现代教育技术创设游戏活动、模拟游戏活动、竞赛活动等生动有趣的教学情境,融科学性、趣味性,教育性于一体,寓学于乐,激发学生的学习兴趣,调动学生的智力因素,锻炼学生分析信息、制定决策和对各种资源做出统筹安排的能力。

④创设“喜悦”情境,激励学生有效思维

“山穷水尽疑无路,柳暗花明又一村”,这是学生在解决问题获及成功而产生欣喜和愉快的生动写照。心理学研究发现:学生课堂学习的动机集中反映在成功动机上,即追求成功,希望获及成功。只有多次获及成功,体验到需要被满足的乐趣,逐渐巩固了最初的求知欲。

创设“喜悦”情境,教师首先要运用心理学理论对教学内容的知识结构和学生的认知水平进行认真分析。在设计教学问题时,要有准确的预见性。一是创设的问题教学情境既要激活学生原有的情感结构(学生在长期生活和学习中的情感体验的沉积);二是要激活学生原有的认知结构(学生在长期学习实践中的知识(积累):三是要合理适度地把握问题的梯度。小跨度符合渐进分化原理,但成功后的欣喜感不强。大跨度有利于培养学生的创造性思维,但设计不当可能成为思维的障碍。

⑤创设争论性情境

争论是一种使学生积极思维的情境,表现为学生思考问题时不墨守成规,追求标新立异。在数学教学中,教师要善于引导学生不受陈规的约束,通过变换命题、变换解法、变换图形等方式,提出新见解和异议,探索解题的捷径,这种情境创设策略多用于解题教学中。

2.2积极鼓励,大胆猜想

教学过程中,教师对学生的思维活动要给予积极的引导,鼓励学生在己有的知识基础上,敢于对新知识进行大胆的猜想。在这个环节,教师要充分利用计算机为学生准备充足的“素材”,做到有效调控,适时提出新问题,以提高学生提出猜想的水平。同时,要突出创造性,鼓励求异,培养思维的广阔性与灵活性。

2.3启发诱导,攻克猜想

引导学生利用己有知识和教师提供的计算机素材进行推理或演示,直至证实自己的猜想正确与否为止。学生提出的猜想也可能正确,也可能错误,教师要根据学生的实际情况,直接的或通过计算机为学生设置“启发诱导”,“启发诱导”应紧紧抓住教学的重点、难点,给不同情况、不同学习基础的学生设置不同程度的内容,如点拨、提示、分析等,使学生及时地废弃错误的猜想,确立正确的猜想。探索过程中教师要适时提示,帮助学生沿概念框架逐步攀升,起初的引导帮助可以多一些,以后逐渐减少直至愈来愈多地放手让学生自己探索;最后要争取做到无需教师引导,学生自己能在概念框架中继续攀登。

2.4强化、规范正确的猜想

指导学生采取查询、讨论、演示、讲解、阅读课本等多种形式,对各种猜想进行分析,纠正错误的猜想,强化、规范正确的猜想。

在情境教学中,要善于诱发主动性、强化感受性、渗透教育性、突出创造性,发挥数学的理性美。特别要重视极富启示性的数学家探索数学奥秘的过程、方法和事迹,以及趣味性问题对学生的启示性,增强数学的趣味性,将教育与教学统

一起来。

三、现现代教育技术与教学模式的整合的意义

现代教育技术与数学教学的整合,不是简单地将现代教育技术作为一种教学手段与传统数学教学手段的叠加,而是通过现代教育技术的介入,使数学教学中的各要素丰富和谐、协调共振,达到优化教学过程、教学资源、教学效果和教学效益,实现数学教学的突破与发展。具体地说,就是在先进教学思想(理论)的指导下,以丰富的信息资源为基础,以现代教育技术为支撑,从数学教学的整体观出发,立足于学生能力的发展,以思维训练为核心,通过学生自主探究、合作研讨、主动创新,增强获取知识的技能,满足兴趣、情感等方面的需要,实现数学素质和信息素养的提高。

四、参考文献

1夏惠贤,当代中小学教学模式研究,南宁:广西教育出版社,2001.3

篇10

第二,教师在教学过程中应扮演什么角色?我们的角色难道只能是编剧、导演、正确的化身、英明的先知?……课堂不应仅仅是留给教师表演的舞台。

第三,在备课的过程中、在课堂上,教师应着重思考什么?以前我的答案总是:把自己知道的、最精彩的、最与众不同的教给学生。其实我们应该逆向思考一下,怎样以最小的知识代价,引起学生最多的思考?

第四,什么是学生的创新?什么是教师的创新?鉴于上述认识,下面就中学数学课堂教学,谈谈如何实施创新教育。

1.注重数学兴趣的激发,让学生在好奇中培养创新意识。

数学兴趣是学生的一种力图接近、探究、了解数学知识和数学活动的心理倾向,是学生学习数学的自觉性和积极性的核心因素。不仅对学生的数学学习有极大的推动作用,而且还使学生在获得知识的同时,努力地去进行创造性的活动,成为创新的动力因素。布鲁纳认为,“学习的最好刺激,乃是对材料的兴趣”。因此,在数学教学中,要从数学素材中选取适合学生年龄特征的方式激发学生的兴趣。如通过讲解“象棋发明者让印度国王往棋盘上放麦粒”的故事来引起学生学习“等比数列前n项和”的兴趣;使用一张薄纸对折若干次后,“可与珠峰试比高”来引起学生的学习指数函数的兴趣;“星期天以后的第22000天是星期几?”也能引起学生对二项式定理的兴趣;通过讲解中国电脑体育彩票获奖面的大小激起学生学习概率的兴趣,等等。在兴趣的形成过程中,激发学生的好奇心和求知欲,促进学生进行自主探究活动,进而形成创新的意识。

2.设计再创造过程,让学生在体验发现中培养创新意识。

教材中的概念、公式、定理等是学生的主要学习内容,对学生而言都是新的。引导学生运用已有的经验、知识、方法去探究与发现,从而获得新知,这对学生而言是一个再创造过程。

例1,关于诱导公式(二)的教学设计

(1)用三角函数定义求sin240°、sin60°(教师强调在同一坐标系中求,为证明作铺垫)。

(2)由学生谈感想并进行猜想。大部分学生得出两种想法:sin240°=-sin60°、sin(180°+α)=-sinα(α为锐角)。有学生进一步猜想sin(180°+α)=-sinα(α∈R)。

(3)引导学生验证。对学生的猜想和证明肯定后,要他们看教材,进行比较,并展开讨论,获得对发现与创新的体验。

3.选择适当的教学内容;让学生在研究性学习中培养创新意识。

教材中有些内容具有基础性和可迁移的特点,则不妨指导学生独立研究学习,向学生提供研究的问题,让学生自己探索得出结论。

例2,正切函数的图象与性质的教学设计。

考虑到几何法作函数图象的局限性和描点分析函数性质作图应用的广泛性,因而微调教材内容(几何法改为描点法)作出教学设计,并由学生独立探索。有的同学作出错误的图象;有的同学作图正确但对单调性的判断仅凭直觉;有不少同学推理有据,作图正确,颇有见地。在研究过程中,函数性质不教自明。

4.讲究解题的教学技巧,让学生在解题中培养创新意识。

①一题多解

在解题教学中,不追求学生的思路跟教材一致,跟教师一致,而要创设开放性的课堂。如课本上有这样一道习题:“已知cotα=m(m≠0)求cosα。”学生先后找出四种思路,他们思维活跃,一题多解,竞相发言,课堂迭起。

②常规问题新解

突破常规、另辟蹊径,是创新的一种表现。因此,在解答一些基本问题、常规问题时,要经常鼓励学生提出新解,进行速解。学生的思路有时是出人意料的。

例3,{an为等比数列,a8=8,a10=16,求a20。

当大多数学生还在求a1时,一个学生就举手了。其解答过程是:由a8=a1q7=8,a10=a1q9=16,得q2=2。a20=a1q9q10=16(q2)5=512。这种速算很有新意。

③开放性生问题

例4,在ABC中,∠ACB=90°,CDAB,由上述条件你能推出哪些结论?

此题求解的范围、想象的空间是广阔的,思维是开放的。教师诱导学生从边、角、相似及三角函数关系等方面归纳出至少15种结论。

5.利用学生提出的疑惑和问题,让学生在相互解疑中培养创新意识。

如在讲评作业或试卷时;我常常在几种正确的解法中夹着一种错误的解法,然后让学生来比较、评价哪一种解法更好。唤起学生主动学习的意识,给他们展现创新能力的机会。

6.创造宽松和谐的教学环境,让学生在愉悦中培养创新意识。

教师要做到:①使学生较自由地思维和表达,在“心理安全”的条件下进行创新思维和想象。②让学生在学习过程中敢于标新立异,在“心理自由”的条件下培养求异思维、聚合思维、逆向思维等多种思维方式。③建立和谐的师生关系,以营造学生创新的氛围。只有师生关系和谐,才能使他们的心理距离接近,心情舒畅,才有可能使学生的创新精神获得最大限度的表现和发展。

篇11

以人教版中职数学(拓展模块)第一章三角公式为例,本章有和角公式、余弦和正弦定理、正弦型函数三大节,笔者根据重难点和实际情况安排二次“过关测试”。第一次,是检阅利用任意角三角函数的定义及三角两个基本关系的知识点的落实情况,设立已知正弦值,求余弦值或反之的过关测试。第二次,是落实求画正弦型函数图象,设立不同的振幅、初相和周期。一批上黑板的可以有4到5个学生,每生得到的已知值均不同,是随机给的,要求他们独立完成。经过教师批改后,当场给予判断是否过关,顺利过关者等同于作业完成一次,未在规定时间内者视为作业缺交一次并给予一定处罚。

过关测试,不仅可以检验学生掌握知识点的情况,还可以督促学生自觉学习。《学习金字塔》中说到:单纯的“听说”两周后学习的内容只能留下5%;通过“阅读”方式学习,保留10%;用“声音、图片”方式学习,保留20%;“示范”保留30%;“小组讨论”,保留50%;“做中学或实际演练”,可以达到75%;“教别人或马上应用”,记住90%的内容。过关测试,就是实现“做中学或实际演练”“教别人或马上应用”这两种效果最好的载体。在过关测试的现场,经常看到学习好的学生,或者是刚刚过完关的同学,立刻被班级其他同学邀请要求辅导。这些“小老师”在教授的同时,也进一步提高了自己的数学水平,而经过这些“小老师”辅导后,学生马上应用起来,独立完成过关。在教师营造的氛围下,同学们摩拳擦掌,跃跃欲试。学习气氛非常激烈。此外过关时面对场下虎视眈眈的同学,独自在黑板上解题,当运用所学知识解对题目,顺利过关,会使学生有很大的成就感,有效地促进学生学习自信心的建立。过关测试的上课形式与以往的课堂完全不同,学生学习的方式也由被动学习变为主动学习。

当然,让学生能主动过关,愿意过关,教师还需要做好以下几点:

1.过关的内容在课内是作为重点要求的,解题步骤很明确,知识概况性强。如落实正弦型函数图象求作的过关测试:第一步列表;第二步描点;第三步连线。又如落实椭圆几何性质的过关测试,椭圆性质概况为1、2、3及4点。具体就是1个离心率,2个焦点,3个长度,4个顶点。

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
发表咨询 加急见刊 文秘咨询 杂志订阅 返回首页