时间:2023-03-27 16:48:24
序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇中学数学研究论文范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!
现代中学数学教育是基础教育非常重要的一部分,对于培养中学生独立思考能力、分析能力、推理能力、计算能力、空间想象能力等都是非常重要的,是“素质教育”的内涵之一。
几年前,我国数学教育工作者提出:中学数学的素质教育或者说中学数学素质的教育是——人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。[1]
对于现代中学数学教育的现状,美国内布拉其斯加大学数学教授史蒂文·邓巴认为:“之所以杜克大学的篮球水平始终能够保持在美国顶尖位置上,就是因为学校、教师以及家长们的通力合作,才造就出一批又一批篮球精英。然而目前美国中学的多数学生只知道把数字填进公式里,而不去理解怎样运用这些数据去解决实际问题。这正是我们在中学数学教育方面失败的所在。”
美国官方和教育专家们认为,一些亚洲和东欧国家在中学数学教学中,注意培养学生的分析、论证和解决问题的能力。而美国则把注意力放在一般的书本练习方面。这些完全不同的方法使得美国中学生数学成绩不佳。美国数学教育专家们呼吁,重新制定数学教学大纲。把解决问题、理解概念和实际应用三者结合起来,设计和安排教学内容,以尽快提高美国学生的数学水平。
20世纪以来,数学发生了巨大的变化,与计算机的结合,使数学在研究领域、研究方式和应用范围等方面得到了空前的发展。现代中学数学教育地的观念和内容也与以往有所不同了,解决问题、理解概念和实际应用三者结合起来就是现代数学教育的主旋律。
当前我国中学数学教育的大致情况是,学校里爱好数学、成绩好、又觉得比较轻松的学生不太多,多数学生对学习数学缺乏兴趣。花的力气不少,但成绩并不好,数学成了学习的负担,拦路虎。大多数学生很难达到理想的数学水平和能力。其中有课程标准要求过高的原因;有教材内容过多过繁的原因;有教师水平不整齐,教得不够活的原因;更有现行评价体制的原因,因为数学是主科,总归是要考的,应试、要考高分的牵制力是很大的。
随着新的课程标准的出台,将会逐渐改变这种局面,但是执行新课程标准的人数以万计,我们必须统一认识,为我国中学数学教育发展,为培养新一代人才而达成共识。
一、关于课程标准的思考
由美国数学教育家的呼吁可见,课程标准是左右一代人的数学素质的行动性纲领,不可不高度重视,不可不认真制订,不同的课程标准培养出不同的人。在重视数学素质教育的课程下,培养出来的人雨季一定比注重数学分数的应试教育的课程标准下的人才要多而且精。可以说课程标准是指挥教材编写、教师教学、学生学习、社会和家长形成数学教育观念的魔棒。在教育普遍受重视的今天,课程标准的制订更是关乎一代人的成长与发展的最重要的纲领性文件。
我国现行的课程新标准较以往的课程标准,显然是先进了不少,更符合国性和现代化建设的需要,其制订的基本理念是突出体现基础性、普及性、应用性、发展性、创造性,现阶段看来是合理的,课程新标准要求数学教育要面向全体学生,这也是完全正确的,也完全符合数学文化素质的内涵。
课程新标准界定了数学素质的内涵,其中不同的人在数学上得到不同的发展更是精华;把数学看成是工具,用以处理数据、进行计算、推理和证明等;把数学看成是为其它科学提供语言、思想和方法的基础学科;把数学看成是培养推理能力、抽象能力、想象能力和创造能力的手段;把数学看成是人类文化的组成部分。后二者是十分重要的理念,这就为数学的素质教育各个环节拓宽了视野,开启了思路。
如果要求大部分人都掌握高深的数学计算、推理和证明,把数学当作是人人都必须掌握的接受进一步教育的敲门砖。当然会使有的青少年把数学当作拦路虎而不当作培养能力的手段和数学文化,从而使在其它领域本的所发展和创造的人才。因为数学的缘故而失去信心、失去机会,这当然是课程标准的罪过而不是数学的缘故。但是,课程新标准也存在一些问题,如从实践的角度考虑,如何解决“个体化教学”与班级授课制这一现实之间的矛盾[2]。课程标准的制订应是一个长期的探索的过程,不可能几个专家一挥而蹴,要反复实践,不断修改,不断更新,以适应新时期发展的需要。
总之,有了新的课程标准,便会有相应的新教材,相应的新教法,相应的新学法,相应的新评价,相应的新理念,也会改变现代中学数学教育的现状。
二、关于教材编写的思考
教材为学生的学习活动提供了基本的线索和工具,是实现课程标准、提高数学素质、实施数学教学的重要资源。教材和课程标准一样是造就一代人的数学素质的工具,不可不高度重视,在班级授课制的教学体制下,一定程度上,可以说用什么样的教材就能培养什么样的人才,毫无疑问,在课程新标准下的教材的编写,已不再是过去那种单一化的版本,而是百花齐放的局面,这为各类学校提供了比较和选择的余地。可以根据校情、班情进行选择,这是一大进步。
新教材所选择的数学素材,就来源于自然、社会与科学中的现象,是密切联系当前生活实际的问题,把数学问题生活化,让数学知识回到现实生活中,将其产生和发展的过程返璞归真,给学生创设问题情境[3],不要为问题而脱离实际,使数学纯化,与生活产生隔阂,但也要反映一定的数学价值,将数学本来的魅力充分展现出来。
新教材的内容编排和呈现突出了知识形成与应用过程,轻结果重过程,体现了螺旋上升的原则,采用逐步加深的方式,引导学生对数学知识、思想和方法的理解,这比以往的教材改进了许多。
新教材的最重要的一个特点是关注了学生人文精神的培养,介绍了有关的数学背景,特别是设计上先进了许多,这是很好的。作为数学教师应深入领会教材的编写意图,摈弃传统的教育理念,以提高学生的数学素养为最终目的,充分发挥教材的教育和教学功能[4]。
但是,在众多执行新课程标准的人中,教材编写者是第一批执行者,若他们偏离轨道。真可以说是差之毫厘,谬以千里,事实上,从目前的教材看就有此嫌疑,分明新课程标准不作要求的内容或者说已过时的内容,不在正文中出现,便要在教材的习题中出现,于是下面教学者,进一步扩大其力度,再走几步,可想而知,课程新标准也就新不了了,和原来列二致,这当然是指少数内容了。所以,好的教材应是以课程新标准为依据的,不偏不倚,恰如其分,带头执行课程新标准的。
总之,的了新教材,便会的相应的新素材,相应的新教法,相应的新学法,也会改变现代中学数学教育的现状。
三、关于教师教学的思考
数学教学是数学活动的教学,是数学思维过程的教学,是师生之间、同学之间交往互动与共同发展的过程。
数学教学应根据所要完成的教材内容,从学情出发,在课堂教学中创设有助于学生自主学习的问题情境,发挥学生的主体性,课堂上教师要摒弃师道尊严,发扬教学民主。激发学生的学习潜能,鼓励学生大胆创新与实践,同时发挥教师的主导地位,组织、引导学生的数学学习活动,与学生合作,努力引导学生从已有的知识和经验出发,进行自主探索现合作交流,并在学习过程中逐步学习、渐渐进步,引导学生通过实践、思考、探索、交流,获取知识,形成技能,锻炼思维,发展能力,学会学习,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习,不仅学到知道,更学到方法、思想。从目前的情况看,数学教学的情况远非如此,估且不论教师的水平是否可以达到,就教师的态度就值得怀疑,有的教师想如此却不敢如此,这与社会的教育观念相关。
教师教学离不开数学教材,数学教材是数学教学的媒体,是学生学习活动的主线,教材不可能适应每个班每个人,教师要发挥主动性和积极性,创造性地使用教材,进行创造性教学,结合学情利用教材,在课堂上,关注学生要多于关注教材,教育是一种关注,关注学生的成长,关注学生的学习目的,学习内容,学习方式,学习环境,关注学生的个体差异[5],适时地实施有差异的教学,使每个学生得到充分的发展。事实上,关注教材比关注学生多的情况还存在,忽略学生的学习目的,学习内容,学习方式,学习环境,忽略个体差异的情况更是比比皆是,教师的教育观念也有待改变。
教师教学还要好紧跟时代,利用现代教育技术在教学中的应用,有效地使用多媒体技术,多媒体技术可以使学习的内容图文并茂,栩栩如生,自然增加了教学的魅力,使学习者保持良好的学习兴趣,提高教学效益[6]。从目前的情况看,现代教育技术还停留在纸上者居多,现代教育技术的培训也是走过堂,没有真正落实,甚至有的地方现代教育技术的设备只是不动产而已,这是相当可惜的资源浪费。可以说,今天让学生使用坏一台电脑,将来他会创造出若干台电脑,教育要舍得投资。
四、关于学生评价的思考
教与学都要评价,评价的目的是全面考察学生的学习状况,激励学生的学习热情,促进学生的全面发展,评价也是教师反思和改进教学的有力手段。
对学生数学学习的评价,传统的评价手段比较单一,主要是测验与考试,只关注学习对知识与技能的理解与掌握,只关注学生数学学习的结果,事实上对学生数学学习的评价还要关注他们的情感和态度的形成和发展,还要关注学生的学习过程,评价以定性描述为主,充分关注学生的个性差异,不要把学生理想化。对学生数学学习的评价手段和形式要多样化,要重视数学学习过程的评价,课堂上适时对学生进行评价,保护学生的自尊心和自信心,发挥评价的激励作用。
对学生数学学习的评价,不仅仅是评价学生,还应评价教师的教学,教师要善于利用评价所提供的大量信息,适时调整和改进教学方法。有部分教师还认为对学生数学学习的评价只是评价学生,这中、是不对的。
五、关于教育观念的思考
现在,家长和社会的教育观念一定程度上还停留在应试教育观念上,甚至一部分教师也不例外,之所以出现这种现象,不在于课程标准,也不在于教材,而在于教师的教学和对学生的评价上。
首先,现在对学生评价的手段单一,还是定量评价为主的唯分数论英雄,在高考的指挥棒下,学生要当英雄就昼拿高分,学生的学习热情不是被激励出来的,而是利益驱动下产生的。
其次,现在教师教学也并未脱离应试教育,素质教育还停留在口头上,对教师而言,不是不想进行素质教育,这里有水平、观念的原因,也有其它原因,还有社会观念的原因。
素质教育观念的形成,光靠课程新标准的制订和执行,光靠新教材的开发利用,光靠教师和新教法,靠新的学生评价机制,都不足以形成,必须一步一步地走,中一个漫长而复杂的过程。为了尽快缩短这个过程的时间,的有利于国家和民族的强大,多出人才,必须大家都行动起来。
参考文献:
[1]《数学课程标准(实验稿)》北京师范大学出版社2002
[2]《改革热潮中的冷思考》郑毓信《中学数教学参考》9/2002
[3]《新教材中的问题情境创设》陈辉志大才疏《湖南教育》6/2003
创设情境教学的原则
创设情境的方法很多,但必须做到科学、适度,具体地说,有以下几个原则:
①要有难度,但须在学生的“最近发现区”内,使学生可以“跳一跳,摘桃子”.
②要考虑到大多数学生的认知水平,应面向全体学生,切忌专为少数人设置.
③要简洁明确,有针对性、目的性,表达简明扼要和清晰,不要含糊不清,使学生盲目应付,思维混乱.
④要注意时机,情境的设置时间要恰当,寻求学生思维的最佳突破口.
⑤要少而精,做到教者提问少而精,学生质疑多且深.
重视创设情境教学的特性
一、诱发主动性:
传统教育的弊端告诫我们:教育应以学生为本。面对当今新时期的青少年,服务于这样一种充满生气、有真挚情感、有更大可塑性的学习活动主体,教师决不可以越俎代庖,以知识的讲授替代主体的活动。情境教学就是把学生的主动参与具体化在优化的情境中产生动机、充分感受、主动探究。如在复习函数这节课时,教师可以创设以下的教学情境:
案例:“我”在某市购物,甲商店提出的优惠销售方法是所有商品按九五折销售,而乙商店提出的优惠方法是凡一次购满500元可领取九折贵宾卡。请同学们帮老师出出主意,“我”究竟该到哪家商店购物得到的优惠更多?问题提出后,学生们十分感兴趣,纷纷议论,连平时数学成绩较差的学生也跃跃欲试。学生们学习的主动性很好地被调动了起来。活势形成,学生们在不知不觉中运用了分类讨论的思想方法。
曾有人说:“数学是思维的体操”。数学教学是思维活动的教学。学生的思维活动有赖于教师的循循善诱和精心的点拨和启发。因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明:不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问、幽默,还是欣喜、竞争,都应考虑活动的启发性,孔子曰:“不愤不启,不悱不发”,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。
二、强化感受性:
情境教学往往会具有鲜明的形象性,使学生如入其境,可见可闻,产生真切感。只有感受真切,才能入境。要做到这一点,可以用创设问题情境来激发学生求知欲。创设问题情境就是在讲授内容和学生求知心理间制造一种“不和谐”,将学生引入一种与问题有关的情境中。心理学研究表明:“认知矛盾时动机的根源。”课堂上,教师创设认知不协调的问题情境,以激起学生研究问题的动机,通过探索,消除剧烈矛盾,获得积极的心理满足。创设问题情境应注意要小而具体、新颖有趣、有启发性,同时又有适当的难度。此外,还要注意问题情境的创设必须与课本内容保持相对一致,更不能运用不恰当的比喻,不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。
案例:在对“等腰三角形的判定”进行教学设计时,教师可以通过具体问题的解决创设出如下诱人的问题情境:
在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下了一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形重新画出来?学生先画出残余图形并思索着如何画出被墨水涂没的部分。各种画法出现了,有的学生是先量出∠C的度数,再以BC为一边,B点为顶点作∠B=∠C,B与C的边相交得顶点A;也有的是取BC中点D,过D点作BC的垂线,与∠C的一边相交得顶点A,这些画法的正确性要用“判定定理”来判定,而这正是要学的课题。于是教师便抓住“所画的三角形一定是等腰三角形吗?”引出课题,再引导学生分析画法的实质,并用几何语言概括出这个实质,即“ABC中,若∠B=∠C,则AB=AC”。这样,就由学生自己从问题出发获得了判定定理。接着,再引导学生根据上述实际问题的启示思考证明方法。
除创设问题情境外,还可以创设新颖、惊愕、幽默、议论等各种教学情境,良好的情境可以使教学内容触及学生的情绪和意志领域,让学生深切感受学习活动的全过程并升化到自己精神的需要,成为提高课堂教学效率的重要手段。这正象赞可夫所说的:“教学法一旦触及学生的情绪和意志领域,这种教学法就能发挥高度有效的作用。”
三、着眼发展性:
数学是一门抽象和逻辑严密的学科,正由于这一点令相当一部分学生望而却步,对其缺乏学习热情。情境教学当然不能将所有的数学知识都用生活真实形象再现出来,事实上情境教学的形象真切,并不是实体的复现或忠实的复制、照相式的再造,而是以简化的形体,暗示的手法,获得与实体在结构上对应的形象,从而给学生以真切之感,在原有的知识上进一步深入发展,以获取新的知识。
案例:在学习完了平行四边形判定定理之后,如何进一步运用这些定理去判定一个四边形是否为平行四边形的习题课上.我先带领学生回顾平行四边形的定义以及四条判定定理:
1、平行四边形定义:两组对边分别平行的四边形是平行四边形。
2、平行四边形判定定理:
(1)两组对边分别相等的四边形是平行四边形。
(2)对角线相互平分的四边形是平行四边形。
(3)两组对角分别相等的四边形是平行四边形。
(4)一组对边平行且相等的四边形是平行四边形。
分析从这五条判定方法结构来看,平行四边形定义和前三条判定定理的条件较单一,或相等、或平行,而第四条判定定理是相等与平行二者兼有,如果将它看作是定义和判定(1)中各取条件的一部分而得出的话,那么从定义和前三条判定定理中每两个取其中部分条件是否都能构成平行四边形的判定方法呢?这样我创设了情境,根据对第四条判定定理的剖析,使学生用类比的方法提出了猜想:
1.一组对边平行且另一组对边相等的四边形是平行四边形。
2.一组对边平行且一组对角相等的四边形是平行四边形。
3.一组对边平行且对角线交点平分某一条对角线的四边形是平行四边形。
4.一组对边相等且对角线交点平分某一条对角线的四边形是平行四边形。
5.一组对边相等且一组对角相等的四边形是平行四边形。
6.一组对角相等且连该两顶点的对角线平分另一对角线的四边形是平行四边形。
7.一组对角相等且连该两顶点的对角线被另一对角线平分的四边形是平行四边形。
在启发学生得出上面的若干猜想之后,我又进一步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维能力的目的,要求学生用所学的5种判定方法去一一验证这七条猜想结论的正确性。
经过全体师生一齐分析验证,最终得出结论:七条猜想中有四条猜想是错误的,另外三个正确猜想中的一个尚待给予证明。学生在老师的层层设问下,参与了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察、猜想、分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知识得到了进一步发展。
四、渗透教育性:
教师要传授知识,更要育人。如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现。法国著名数学家包罗•朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华民族有着光辉灿烂的数学史,如果将数学科学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱科学,学科学的良好风气有着重要作用。
教师应根据教材特点,适应地选择数学科学史资料,有针对性地进行教学
案例:圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:最初一些文明古国均取π=3,如我国《周髀算经》就说“径一周三”,后人称之为“古率”。人们通过利用经验数据π修正值,例如古埃及人和古巴比伦人分别得到π=3.1605和π=3.125。后来古希腊数学家阿基米德(公元前287~212年)利用圆内接和外接正多边形来求圆周率π的近似值,得到当时关于π的最好估值约为:3.1409<π<3.1429;此后古希腊的托勒玫约在公元150年左右又进一步求出π=3.141666。我国魏晋时代数学家刘微(约公元3~4世纪)用圆的内接正多边形的“弧矢割圆术”计算π值。当边数为192时,得到3.141024<π<3.142704。后来把边数增加到3072边时,进一步得到π=3.14159,这比托勒玫的结果又有了进步。待到南北朝时,祖冲之(公元429~500年)更上一层楼,计算出π的值在3.1415926与3.1415927之间。求出了准确到七位小数π的值。
我国的这一精确度,在长达一千年的时间中,一直处于世界领先地位,这一记录直到公元1429年左右才被中亚细亚的数学家阿尔•卡西打破,他准确地计算到小数点后第十六位。这样可使同学们明白,人类对圆周率认识的逐步深入,是中外一代代数学家不断努力的结果。我国不仅以古代的四大发明-------火药、指南针、造纸、印刷术对世界文明的进步起了巨大的作用,而且在数学方面也曾在一些领域内取得过遥遥领先的地位,创造过多项“世界纪录”,祖冲之计算出的圆周率就是其中的一项。接着我再说明,我国的科学技术只是近几百年来,由于封建社会的日趋没落,才逐渐落伍。如今在向四个现代化进军的新中,赶超世界先进水平的历史重任就责无旁贷地落在同学们的肩上。我们要下定决心,努力学习,奋发图强。
为了使同学们认识科学的艰辛以及人类锲而不舍的探索精神,我还进一步介绍:同学们都知道π是无理数,可是在18世纪以前,“π是有理数还是无理数?”一直是许多数学家研究的课题之一。直到1767年兰伯脱才证明了是无理数,圆满地回答了这个问题。然而人类对于π值的进一步计算并没有终止。例如1610年德国人路多夫根据古典方法,用262边形计算π到小数点后第35位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在它的墓碑上。至今圆周率被德国人称为“路多夫数”。1873年英国的向客斯计算π到707位小数,1944年英国曼彻斯特大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决定重新算一次。他从1944年5月到1945年5月用了一整年的时间来做这项工作,结果发现向克斯的707位小数只有前面527位是正确的。后来有了电子计算机,有人已经算到第十亿位。同学们要问计算如此高精度的π值究竟有什么意义?专家们认为,至少可以由此来研究π的小数出现的规律。更重要的是对π认识的新突破进一步说明了人类对自然的认识是无穷无尽的。几千年来,没有哪一个数比圆周率π更吸引人了。根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断加深的过程也是学生深受感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。
五、贯穿实践性:
情境教学注重“情感”,又提倡“学以致用”,努力使二者有机地统一起来,在特定的情境中和热烈的情感驱动下进行实际应用,同时还通过实际应用来强化学习成功所带来的快乐。数学教学也应以训练学生能力为手段,贯穿实践性,把现在的学习和未来的应用联系起来,并注重学生的应用操作和能力的培养。我们充分利用情境教学特有的功能,在拓展的宽阔的数学教学空间里,创设既带有情感色彩,又富有实际价值的操作情境,让学生扮演测量员,统计员进行实地调查,搜集数据,制统计图,写调查报告,其教学效果可谓“百问不如一做”,学生产生顿悟,求知欲得到满足更加乐意投入到新的学习情境中去了。同时对学生思维能力、表达能力、动手能力、想象能力、提出问题和解决问题的能力,甚至交际能力、应变能力等等,都得到了较好的培养和训练。
案例:“三角形内角和定理”就可以通过实践操作的办法来创设教学情境。学生的认知结构中,已经有了角的有关概念,三角形的概念,还具有同位角、内错角相等等有关平行线的性质。这些都是学习新知识的“固着点”,但由于它们与“三角形内角和定理”之间的逻辑联系并不十分明显,大部分同学都难以想到要对三角形的三个内角之和进行一番研究,这种情况下,我们可以创设这样的数学情境:首先,在回顾三角形概念的基础上,提出:“三角形的三个内角会不会存在某种关系呢?”这是纲领性提问,对学生的思维还达不到确定的导向作用,学生可能会对角与角的相等、不等、两角之和(差)与第三个角的大小比较等等问题进行研究,当发现这些问题只对某些特殊三角形有意义时,他们的思维可能会指向“三个内角的和是否有一定的规律?”我适时地提出:“请同学们画一些三角形(包括锐角、直角、钝角三角形),再用量角器量出三个角,观察一下各三角形的三个内角有什么联系。”经测量、计算,学生发现三个内角的和都在180°左右。我再进一步提出:“由于具体测量会有误差,但和数都在180°左右,三角形的三个内角之和是否为180°呢?请同学们把三个角拼在一起,看一看,构成了一个怎样的角?”学生在完成这一实验后发现,三个内角拼在一起构成一个平角。经过上述两步实验,提出“三角形的三个内角之和为180°”的猜想就水到渠成了。接着,我指出了实验操作的局限性,并要求学生给出严格的逻辑证明。在寻找证明方法时,我提出:“观察拼接图形,从中能得到什么启示?”学生可凭借实践操作时的感性经验,找到证明方法。实践操作不但使学生获得了定理的猜想,而且受到了证明定理的启发,显示了很大的智力价值。又如:我在初三复习列方程解应用题时,为了让学生明白学数学的主要目的是要培养思维和掌握解决问题的能力,在课的最后出了一道开放型命题:
将一个50米长30米宽的矩形空地改造成为花坛,要求花坛所占的面积,恰为空地面积的一半。试给出你的设计方案(要求:美观,合理,实用,要给出详细数据)。这题是一道中考题,是应用数学的典型实例,既培养学生解决问题的能力又开发他们的创新思维。学生讨论得十分激烈,不断有新的创意冒出来,有的因无法操作而被别人否定,也有不少十分不错的设想。通过这次讨论,我觉得每个学生都是有潜力可挖的,解决问题的能力虽有强弱,但我们教师更应该多培养多点拨多激励,以增强学生学习数学的自信心。
创设情境教学的主要方式
一,创设应用性情境,引导学生自己发现数学命题(公理、定理、性质、公式)
案例1在“均值不等式”一节的教学中,可设计如下两个实际应用情境,引导学生从中发现关于均值不等式的定理及其推论.
①某商店在节前进行商品降价酬宾销售活动,拟分两次降价.有三种降价方案:甲方案是第一次打p折销售,第二次打q折销售;乙方案是第一次打q折销售,第二次找p折销售;丙方案是两次都打(p+q)/2折销售.请问:哪一种方案降价较多?
②今有一台天平两臂之长略有差异,其他均精确.有人要用它称量物体的重量,只须将物体放在左、右两个托盘中各称一次,再将称量结果相加后除以2就是物体的真实重量.你认为这种做法对不对?如果不对的话,你能否找到一种用这台天平称量物体重量的正确方法?
学生通过审题、分析、讨论,对于情境①,大都能归结为比较pq与((p+q)/2)2大小的问题,进而用特殊值法猜测出pq≤((p+q)/2)2,即可得p2+q2≥2pq.对于情境②,可安排一名学生上台讲述:设物体真实重量为G,天平两臂长分别为l1、l2,两次称量结果分别为a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,两式相乘,得G2=ab,由情境①的结论知ab≤((a+b)/2)2,即得(a+b)/2≥,从而回答了实际问题.此时,给出均值不等式的两个定理,已是水到渠成,其证明过程完全可以由学生自己完成.
以上两个应用情境,一个是经济生活中的情境,一个是物理中的情境,贴近生活,贴近实际,给学生创设了一个观察、联想、抽象、概括、数学化的过程.在这样的问题情境下,再注意给学生动手、动脑的空间和时间,学生一定会想学、乐学、主动学.
二,创设趣味性情境,引发学生自主学习的兴趣
案例2在“等比数列”一节的教学时,可创设如下有趣的情境引入等比数列的概念:
阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当它追到1里处时,乌龟前进了1/10里,当他追到1/10里,乌龟前进了1/100里;当他追到1/100里时,乌龟又前进了1/1000里……
①分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;
②阿基里斯能否追上乌龟?
让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,很快就进入了主动学习的状态.
三,创设开放性情境,引导学生积极思考
案例3直线y=2x+m与抛物线y=x2相交于A、B两点,________,求直线AB的方程.(需要补充恰当的条件,使直线方程得以确定)
此题一出示,学生的思维便很活跃,补充的条件形形.例如:
①|AB|=;②若O为原点,∠AOB=90°;
③AB中点的纵坐标为6;④AB过抛物线的焦点F.
涉及到的知识有韦达定理、弦长公式、中点坐标公式、抛物线的焦点坐标,两直线相互垂直的充要条件等等,学生实实在在地进入了“状态”.
四,创设直观性图形情境,引导学生深刻理解数学概念
案例4“充要条件”是高中数学中的一个重要概念,并且是教与学的一个难点.若设计如下四个电路图,视“开关A的闭合”为条件A,“灯泡B亮”为结论B,给充分不必要条件、充分必要条件、必要不充分条件、既不充分又不必要条件以十分贴切、形象的诠释,则使学生兴趣盎然,对“充要条件”的概念理解得入木三分.
五,创设新异悬念情境,引导学生自主探究
案例5在“抛物线及其标准方程”一节的教学中,引出抛物线定义“平面上与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线”之后,设置这样的问题情境:初中已学过的一元二次函数的图象就是抛物线,而今定义的抛物线与初中已学的抛物线从字面上看不一致,它们之间一定有某种内在联系,你能找出这种内在的联系吗?
此问题问得新奇,问题的结论应该是肯定的,而课本中又无解释,这自然会引起学生探索其中奥秘的欲望.此时,教师注意点拨:我们应该由y=x2入手推导出曲线上的动点到某定点和某定直线的距离相等,即可导出形如动点P(x,y)到定点F(x0,y0)的距离等于动点P(x,y)到定直线l的距离.大家试试看!学生纷纷动笔变形、拚凑,教师巡视后可安排一学生板演并进行讲述:
x2=y
x2+y2=y+y2
x2+y2-(1/2)y=y2+(1/2)y
x2+(y-1/4)2=(y+1/4)2
=|y+14|.
它表示平面上动点P(x,y)到定点F(0,1/4)的距离正好等于它到直线y=-1/4的距离,完全符合现在的定义.
这个教学环节对训练学生的自主探究能力,无疑是非常珍贵的.
六,创设疑惑陷阱情境,引导学生主动参与讨论
案例6双曲线x2/25-y2/144=1上一点P到右焦点的距离是5,则下面结论正确的是().
A.P到左焦点的距离为8
B.P到左焦点的距离为15
C.P到左焦点的距离不确定
D.这样的点P不存在
教学时,根据学生平时练习的反馈信息,有意识地出示如下两种错误解法:
错解1.设双曲线的左、右焦点分别为F1、F2,由双曲线的定义得
|PF1|-|PF2|=±10.
|PF2|=5,
|PF1|=|PF2|+10=15,故正确的结论为B.
错解2.设P(x0,y0)为双曲线右支上一点,则
|PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,
|PF1|=ex0+a=15,故正确结论为B.
然后引导学生进行讨论辨析:若|PF2|=5,|PF1|=15,则|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,这与三角形两边之和大于第三边矛盾,可见这样的点P是不存在的.因此,正确的结论应为D.
进行上述引导,让学生比较定义,找出了产生错误的在原因即是忽视了双曲线定义中的限制条件,所以除了考虑条件||PF1|-|PF2||=2a,还要注意条件a<c和|PF1|+|PF2|≥|F1F2|.
通过上述问题的辨析,不仅使学生从“陷阱”中跳出来,增强了防御“陷阱”的经验,更主要地是能使学生参与讨论,在讨论中自觉地辨析正误,取得学习的主动权.
总之,切实掌握好创设情境教学的原则、重视创设情境教学过程的特性,合理应用创设情境教学的方式,充分重视“情境教学”在课堂教学中的作用,通过精心设计问题情境,不断激发学习动机,使学生经常处于“愤悱”的状态中,给学生提供学习的目标和思维的空间,学生自主学习才能真正成为可能.在日常的教学工作中,不忘经常创设数学情境,引导学生自主学习,动机、兴趣、情感、意志、性格等非智力因素起着关键的作用.把智力因素与非智力因素有机地结合起来,充分调动学生认知的、心理的、生理的、情感的、行为的、价值的等方面的因素,让学生进入一种全新的情境境界,学生自主学习才能达到比较好的效果.这就需要在课堂教学中,做到师生融洽,感情交流,充分尊重学生人格,关心学生的发展,营造一个民主、平等、和谐的氛围,在认知和情意两个领域的有机结合上,促进学生的全面发展.
参考文献:
1、皮连生《学与教的心理学》(华东师范大学出版社1997年)
2、柳斌《学校教育科研全书》(九州图书出版社,人民日报出版社1998年)
3、肖柏荣《数学教育设计的艺术》(《数学通报》1996年10月)
4、章建跃《关于课堂教学中设置问题情境的几个问题》(《数学通报》1994年6月)
5、盛志军《今天,我没有完成授课计划》(《数学教学》2004年第11期)
本人抽样调查了某校部分学生今年的高考成绩如下表:从上表可知数学成绩人平分男生优于女生,但总体成绩基本上是平衡的。由此可见,男、女生在平均智商方面显然无显著差异,但在智能品质和类型上则存在着一定的差异。那么该怎样正确对待性别差异而使女生学好数学?
二、男、女生在智力因素上的差异
在感知觉方面,女性的感受性较高,触觉、嗅觉较敏感,听觉能力较强。男性则视觉能力较强。由于具有较强的视觉空间能力,男生的空间表象能力优于女生。在记忆力方面,女生一般偏重于机械记忆和形象记忆。男生则倾向于理解记忆和抽象记忆。在注意力方面,女生的注意力多定向于人。男生的注意力多定向于物,并且喜欢探究物体内部构造的奥秘。在思维品质上,女生由于有较强的形象记忆和机械记忆。而偏向于形象思维类型,主要依靠表象间的类比和联想,富于想象力,但思维的灵活性不够,理解力较差。男生偏向于抽象思维类型,主要依靠概念进行判断和推理,有较强演绎、归纳能力,思维的灵活性较好,理解力较强。在思维方式上,女生倾向于模仿,处理问题时注意部分和细节,但对全局与各部分之间的关系把握较差。男生独立思考较多,分析综合能力较优,处理问题时较为重视全局与各部分之间的联系,但对细节注意不够。
由于在智能品质和类型上男、女生之间存在着上述差异,而数学学习则需要较强的抽象思维能力,空间想象能力及思维的灵活性和理解力,这些智力品质正是女生较薄弱的方面,这是造成男、女生数学成绩分化的重要原因。
三、男、女生在非智力因素上的差异
在兴趣方面,在兴趣的倾向性上男生明显爱好科学,喜欢各种科学书报,积极参加课外科技活动。女生则多半对小说、电影、音乐、舞蹈感兴趣。在性格特征方面,女生在守纪律、勤奋、认真、细致、踏实等性格特征方面优于男生;而在坚持性、顽强性、自制力、情绪稳定性、自信心、独立性等性格方面不如男生,而后面的几项性格特征恰恰是在解决难度较大的数学问题时极其重要的。所以随着年级的升高,学习难度加大,男、女生数学学习成绩的差距在扩大。
四、因材施教,提高女生的数学学习效果
性别差别是客观存在的。女生在数学学习中往往处于落后的地位。如何根据女生的心理特点,发挥女生的优势,提高女生的数学学习成绩,本人从教学实践中体会到应从以下几方面入手:
1、帮助女生提高自信心,发挥非智力因素的作用
在教学中要有意识地介绍杰出女性的事迹,为学生树立榜样,让学生坚信女性在各方面的才华都不亚于男性。同时要帮助她们学会正确的归因。学会正确地分析和评价自己,树立自信心。另一方面采用正确的学习方法,重视理解,分析推理。另外在平时的教学中帮助培养她们的独立性、自主性及坚强的意志、毅力等在创造性活动中起主导作用的非智力因素的品质。
2、加强对女生抽象思维能力的培养
由于女生抽象思维能力发展水平相对较低,在理解数学概念时易发生困难。教学中要注意充分发挥形象思维的优势,使抽象的概念形象化,促使从形象思维到抽象思维的提升。从而让理解更加深刻。如函数的奇偶性,就可以先从直观形象的函数图像入手,通过“如何用数学语言描述这种对称性?”让学生在概念的归纳过程中加强对女生抽象思维能力的培养。
3、创造积极轻松、平等的课堂气氛,鼓励积极思考、质疑问难。
现代心理学认为,学生只有在民主平等的教育气氛中,才能迸发出想象力、创造力的火花。可见,创造良好的课堂心理气氛有赖于教师对待学生的公正和平等。教师要尊重、关心每个学生,让每个学生都能获得同样的地位和机会。尤其要注意多给那些自卑感强有后进女生崭露头角的机会,以增强她们学习的自信心。如果每个学生经常感到教师对她的关心、尊重,便会迸出蕴藏在自身巨大的学习力量,便会在和谐的气氛中学习知识、发展能力,形成健全的人格。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:
某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:
(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。
(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。
(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)
(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。
本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:
方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)
方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;
方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;
然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。
通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
(一)在教学中传授学生初步的数学建模知识。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,
每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?
[简化假设]
(1)每间客房最高定价为160元;
(2)设随着房价的下降,住房率呈线性增长;
(3)设旅馆每间客房定价相等。
[建立模型]
设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此
由可知
于是问题转化为:当时,y的最大值是多少?
[求解模型]
利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),
[讨论与验证]
(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。
(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。
(二)培养学生的数学应用意识,增强数学建模意识。
首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(三)在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。
论文关键词:数学建模数学应用意识数学建模教学
论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。
参考文献:
1.《问题解决的数学模型方法》北京师范大学出版社,1999.8
2004年4月,教育部颁布《全日制普通高级中学数学教学大纲(实验修订版)》首次明确提出:在必修课的内容中安排“研究性课题学习”(12课时),并给出了其教学目标和参考课题。研究性学习,作为培养学生创新精神和实践能力的一种重要途径和载体,无疑是当前我国基础教育课程改革的热点、亮点和难点。应该说,目前中学对数学研究性学习进行了一些积极的尝试,并且取得了一定成绩,体现在推动了学校管理体制的改革,促进了学校、社会、家庭间的相互配合,从整体上推进了数学素质教育的实施,加快了教学设备的更新,为学校发展奠定了基础。而且,数学研究性学习的开展充分尊重与满足师生及学校环境的独特性与差异性,有助于学校形成支持和激励的氛围,有助于教育质量的提高。但是,我们也应该看到,由于数学研究性学习没有非常成熟的经验可供借鉴,因而在具体运作过程中,也会出现一些问题,需要我们认真审视和深入思考,并在实施前就要加以注意。
一、高中数学研究性学习的展开要学会因校制宜
高中数学研究性学习强调要结合学生学习、生活和社会生活实际选择研究专题,同时要充分利用本校本地的各种教育资源。学校内部资源包括具有不同知识背景、特长爱好的数学教师,包括图书馆、实验室、计算机、校园等设施设备和场地。也包括反映学校文化的各种有形无形的资源。有条件的地方应尽量利用高校、科研院所、学术团体等部门的数学人才和数学电子信息资源为数学研究性学习的开展提供有力支持。从某种意义上说,越是困难的地区和学校,对培养学生应用所学知识研究解决实际问题的意识和能力的需求越迫切。上海郊县一所中学的农村学生在数学和生物教师指导下,针对当地经常受到乳虫危害,造成麦子大量减产的情况,成立了“勤虫诱因与防治预报”课题组,他们的研究结果被镇植保站采纳,课题组也深受鼓舞。
除了充分利用校内外教育资源外,学校也要结合自身实际对数学研究性学习的开展进行有效管理。在这方面,上海市晋元高级中学做法有可取之处。他们有研究性学习的两级管理指导协调系统:一是学校和教师,包括研究性学习教研室,教务处、年级组、学生处、团委、总务处,大家分工明确,互相配合。二是教研室与学生之间管理协调系统,例如,他们有高一年级组研究性学习协调委员会,由学生干部担任主要角色,对包括数学研究性学习在内的各类研究性学习进行学生间的协调和管理,有助于及时发现问题,解决问题。
二、教师观念的转变和角色的转换
数学研究性学习的具体操作者是学校和教师,除了学校以外,数学教师的作用更是不容忽视。数学研究性学习是为了让学生“会学数学”,数学研究性学习应视学校学习为起点,以“终身学习”为目标,为了更好的开展研究性学习,数学教师要进行如下观念的转变:以人为本,以问题和问题解决为中心,因为“问题是数学的心脏”:数学研究性学习应面向全体学生,实现“人人学有价值的数学”,“人人都获得必需的数学’,“不同的人在数学上获得不同的发展”。在数学研究性学习的实施中,要让全体同学参与其中,乐在其中;数学来源于生活又回归于生活,因此,数学研究性学习应在学生认知发展水平和已有的知识经验基础上,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。公务员之家
在数学研究性学习的实施中,数学教师观念转变是前提,同时要求数学教师也要进行角色的转换。首先,数学教师应是学习者。因为“数学课程标准”的理念是“以人为本”,数学研究性学习是人本思想的体现,因此数学教师要摸清学生在数学研究性学习中的心理机制和认知特点,以学习者的身份去体验数学研究,以学习者的立场参与其中,去发现问题,反思问题,进而引发学生学会向数学提问,学会向数学问题解决提问。
其次,数学教师应充当指导者。数学研究性学习是与数学问题的解决密不可分的,而问题的解决又不是一朝一夕之功。为此,数学教师在选题阶段,要针对学生学习与发展需要,结合学校和社区教育资源条件、特点,开发设计适合学生研究的课题。另外,还可提出建议,让学生讨论,形成具体计划,还可提供相关背景知识,诱导学生寻找值得研究的课题:在实施阶段,教师要进行分工指导,帮助学生明确目标任务和职责。另外,数学教师还要对学生进行心理疏导,激励学生研究探索,鼓励学生克服挫折。在方法上,教师也要根据新情况新问题鼓励学生不断对实施方案进行微调。除此之外,教师要指导学生在数学研究性学习中,获得数学科学态度、科研方法、探索兴趣的感悟和体验。
再有,数学教师应充当评价者。这里的评价包括两方面,一是教师对学生的评价,在这一过程中,要注意过程评价与结果评价相结合,多注重过程,注意激励与导向的结合。注意多元化的评价,既要关注学生在数学研究性学习方面已达到的程度水平,更要关注学生行为、情感、态度的生成和变化,一些中学开展的数学研究性学习论文答辩会和成长纪录袋的评价形式值得借鉴;二是数学教师对自身的评价。数学课程的改革,要求教师对任何学习活动都要有反思与体验,对研究性学习也是如此。从这一点来讲,数学教师应当去反思自己在研究性学习中的表现,强化评价意识。只有知道什么样的选题是好的选题,自己才能帮助学生把好关、选好题,只有知道什么样的指导最到位,才会引领学生在数学研究性学习的过程中少走弯路,提高效率。
三、研究性学习的定位及其与数学教学的关系
数学研究性学习是面向全体学生的,而不是只针对少数优秀学生的,它以激发学生主动探索的积极性,培养学生的创新精神为追求目标,鼓励学生介入数学学科前沿的研究,要求学生的研究结果具有一定的科学性,但并不强求每个学生的最后研究结果都必须独一无二。。强调这样的定位,有助于预防数学研究性学习变为新的数学学科竞赛。
由于数学研究性学习的特点,大大改变了以往的教育模式,学生不再只是被动接受者,而是成为学习的主人,是问题的研究者和解决者,而教师则是在适当的时候对学生给予帮助,起着组织和引导的作用。从初步开展数学研究性学习的实践情况来看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。访谈结果显示,因为开展数学研究课题的需要,学生“用然后知不足”,常常自觉的加深或拓宽了与课题相关的数学学科课程的学习:有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否可以这样说,数学研究性学习和现有数学学科教学之间,不是一个反对一个,一个否定一个,而是互为补充,相互促进的关系。
四、应着眼于使学生认识数学文化的魅力,将知识融入到生活实际
研究表明,制约课堂气氛的要素很多,有教师、学生、教材、教法等,但是其中最关键的还是教师。构建良好课堂气氛的各种要素,只有通过教师的创造性劳动,才有可能整合为良好的课堂气氛,发挥其应有的功能。教师在创造良好课堂气氛的过程中,起着主导性的作用。美国心理学家罗杰斯指出:课堂气氛主要是教师行为的产物。在教学中,教师应注意:
1、把握最佳的教学心态。教师教学的心态,直接影响着学生学习的情绪,它是教师自身心理素质的反映,也是教师课堂教学艺术的体现,要保持教学是最佳的心理状态,首先,课前准备要充分。课前应认真仔细地做好准备工作,教学各主要环节能历历在目,做到教学过程清新、结构合理、方法恰当、内容适度。
其次,进行教学要投入。教师一旦走上讲台,就要纯净杂念,快速进入角色,全身心地投入到教学活动中,用教学激情去调动学生的学习热情,用教学艺术去焕发学生的学习积极性。
2、建立良好的师生关系。师生关系好,彼此心理相容,教与学双方都会沉浸在轻松愉悦的课堂气氛之中。教师讲解激情满怀,生动传神,学生学习全神贯注,兴趣盎然。反之,师生关系不融洽,学生必然会感到一种心理压力,教师教学也不能得心应手,课堂气氛势必沉闷、呆板。
3、发挥教学的艺术魅力。数学内容比较抽象,因此,教师要深入钻研教材,正确使用各种教学方法和现代化教学手段,充分发挥数学教学艺术的独特魅力,将数学知识的科学性、教育性和趣味性,用艺术的形式诉诸于学生的感官,激起学生的学习需求。
力求使陌生的材料熟悉化,乏味的材料趣味话,抽象的材料具体化,灵活调控课堂教学节奏与进程,使学生在学习活动中,时而出现疑问,时而得到启迪,时而产生顿悟,时而获得成功,使整个教学过程成为一个有有激情、有欢乐的起伏跌宕的情感变化过程。
二、创造良好的课堂气氛,要十分重视学生的主体作用
学生既是教学的对象,又是学习的主体。因此,创造良好的课堂气氛,关键在于教师能否切实调动学生学习的主观能动性,使学生真正成为教学的主体,学习的主人。
1、让学生保持最佳学习心态。任何学习过程都存在着复杂的心理活动,在不同的心理状态下学生学习的表现与效果截然不同。当学生处于最佳心理状态时,学习情绪高涨,专心致志,课堂气氛热烈而愉悦。
为此,教师应注意:把微笑带进课堂--以情感情。微笑能沟通师生之间的感情,爱的微笑可以征服学生的心灵。当学生思想走神、思绪信马由缰时,充满理智和期待的微笑,能使学生"迷途知返";当学生答问受挫时,满怀鼓励和依赖的微笑,能使学生心安智生、"柳暗花明";当学生板演成功时,饱含肯定和赞赏的微笑,能使学生自信心大增,激起更强的求知欲。把成功带给学生--因材施教。教育心理学认为,激发学生学习的动机有种种诱因或手段,成就动机则是普遍的、有效的一种,它应成为学生课堂学习的主要动机。在教学中,教师要注意让不同层次的学生都有成功的机会和不同的收获,既提出共同要求,也提出个别要求。
如在课堂作业的配置与处理上,可以让不同层次的学生完成不同题量、不同难度的作业,并通过当堂批改或讲评,及时满足学生急于知道作业正确与否的迫切心理需求,开阔学生解题思路,使那些解题中"别出心裁"的学生得到赞誉。这样可以让不同层次的学生都体验到成功的喜悦,从而形成一种乐于学习的最佳心理状态。
2、让学生积极参与探究新知。教学不仅要让学生掌握知识的结论,更要理解知识发生和发展的过程。教学时,教师要善于创设探究情境,诱导学生自己动手操作、动眼观察、动脑思考、动口表达,从中得到探索者的收获,发现者的欢乐,胜利者的喜悦。美国心理学家罗杰斯指出:教师应以形成良好的课堂心理气氛为己任,使学生更加充分地、热情地参与整个教学过程。
初中数学的教学不仅要考虑其自身的特征和规律,更应遵循学生学习数学的心理规律,数学学习中不能单纯地依赖于模仿和记忆,动手实践,自主探索是学习数学的重要方式。
这种教学法的步骤是:引导自学---教师点拨---变式训练---归纳提高。
(一)引导自学。教学过程是教师主导与学生主体作用合谐统一的过程,只有充分发挥双方的积极性,才能取得最佳效果。教师必改过去重“教”轻“学”的弊病。让学生自觉、主动的参与教学活动的全过程。首先由教师精心设计,导入新课,然后出示自学提纲,引导学生自学课本,并寻找提纲答案。自学中可让学生讨论疑难问题。同时教师积极巡回指导,因材施教,帮助差生,使他们不掉队。这样,学生的学习积极性会充分调动起来,讨论问题气氛活跃,充分体现出学生学习的自主性和主观能动性。
(二)教师点拨。在强调学生主体作用的同时,也不能忽视教师的主导作用、点拨作用。在整个教学法活动中,教师要确实起到点睛之效。教师主要点拨学生在自学中遇到的疑难问题;点拨教材中的重点、关键;点拨典型例题的解题思路和方法。这样,在整个教学活动中才能做到有的放矢,重点突出。
信息技术教育更是要立足改变学生的学习方式,积极倡导探究性学习,让学生成为知识的“发现者”、“探究者”和“运用者”。从信息技术这门课程本身来说,其具有一定的特殊性。第一、在高中阶段只是一门毕业会考科目,学生的重视程度不够;第二、这门学科又主要是以学生的应用、操作为主;第三、这门学科的教学又受到学校自身硬件条件的限制。多方面都给该学科的教学造成了很大的难题,因此要搞好该学科的教学,作为教师要下的功夫就更多,面临的问题也更艰巨,那么如何利用好有限的课堂,提高课堂的质量是非常重要的。通过几年的教学经验,我觉得在信息技术教学中认真开展“探究性学习”非常必要。那么,怎样才能在信息技术学科中更好地开展探究性学习呢?
一、教师教学观念的转变是开展探究性学习的前提
由于传统教学观念的影响,学科教学过程中存在着过于注重知识传授的倾向,过于强调接受学习,死记硬背,学生的学习兴趣被忽视,学习主动性被压抑,因而不利于培养学生的创新精神和实践能力。现代教师教学应当以学生为中心,教师要改变传统的灌输式的教学方法,在教学过程中要通过讨论、研究、试验等多种教学组织形式,引导学生积极主动的学习,使学生学习成为在教师引导下主动的富有个性的过程。尤其对于信息技术这种操作性强的科目,学生必须要有充足的、独立的时间。
二、营造开放和谐的学习环境
民主宽松的学习环境,平等愉悦的学习气氛,开放自主的学习内容,有利于调动学生学习的兴趣,发挥学生学习的积极性与主动性,使学生在学习过程中敢想敢说敢问敢做,在知识的掌握和技能的形成过程中,充分展示自我,体验探究的快乐。教学中,教师要充分地信任学生,相信学生的知识底蕴、操作能力与发展潜力,让学生在开放的学习环境中大胆探索。教师积极运用赏识表扬的教学评价艺术,及时对学生的探究成果予以肯定,加以赞赏。以科学研究的态度,正确对待学生在探究过程中出现的偏差,通过共同研究,独立思考,分析问题,纠正误差,并有可能创造性地解决问题,完成探究任务。
三、创设有利于探究性学习的情境,激发学生探究的动机是开展探究性学习的关键
现代心理学认为,人的行动都是由动机引起的。所以激发学生探究的动机是引导学生主动探究的前提。因此,教学中,教师要利用各种手段、创设情境,点燃学生思维的火花,谱写丰富多彩、生动有趣的教学篇章。
1.以旧引新,沟通引趣
在新旧知识的联结点上,提出启发性、思考性强的问题,使学生感到新知不新,难又不难,激发学生尝试探究新知识的欲望。
例如,教学《在幻灯片中插入图片》时,教师先出示一张插有剪贴画和图片文件的幻灯片,先让学生观察欣赏,然后指出:本作品中插入剪贴画和图片文件使用了你以前在word里学过的方法,请你用探索和研究的学习方法来制作一张同样效果的作品。这样,会使全体学生都参与到尝试探究中去。
2.制造误区,设疑生趣
学生的认识是从不全面、不深刻甚至常出谬误的多次反复中逐步发展起来的。制作误区就是针对教学中学生易错易漏的知识内容、难以掌握的基本技能等预设陷阱,让学生预先体验错误,以杜绝或少犯同样的错误。
如在讲授windows98的目录操作和文件目录属性的设置后,可故意将学生以往建立的文件拷贝到一个隐含的目录中,学生上机时便发现自己的文件“不见了”,纷纷提出为什么?此时再适时引导学生进行分析,他们便可能找出“被删除、被更名、被设置为隐含属性、被复制到其它目录中后再删除源文件”等多种答案。教师再对他们的想法给予进一步分析,肯定其正确的方面,通过这样的学习来加深对知识的理解。
掉进陷阱的体验往往比走一段直路更容易使人记忆犹新,通过制造误区,激发了学生探索新知的积极性。
3.安排游戏,寓学于乐
将益智游戏引入课堂,寓学于乐,激发学生学习兴趣,让学生带动手实践中主动去探索知识,真正成为学习的小主人。
鼠标的操作是windows操作的基础,单纯练习鼠标的操作是枯燥乏味的。因此,在教学中我安排了《纸牌游戏》内容。要求学生自己研究怎样启动纸牌游戏?怎么玩?兴趣是最好的老师,学生们两人一组边看书边操作边研究,紧张地忙碌起来。
4.设置故事情境,引发求知欲
教师根据教材内容的特点和需要选讲一些有趣的故事片段,使学生在聚精会神听故事的同时,进人到新课意境。
例如,在“画直线和曲线”教学时,首先设置一个故事情境:有一只很爱冒险的小熊坐着热气球去环球旅行。一天,它乘坐的热气球坏了,降落在一个孤岛上。同学们,你有什么办法帮助小熊离开孤岛吗?教师然后指出:让我们一起造一艘帆船带小熊离开孤岛吧。
通过故事导入,新颖、自然、能立刻引起学生的好奇心,产生强烈的求知欲望。
5.说明意义,激发兴趣
通过一定的方式告诉学生本节课的学习目的,说明当前学习对未来学习的意义或社会实践的意义,激发学生参与学习的热情,从而产生探究的动机。
例如:学习画图时,告诉学生电视上的动画都是用计算机画的,让那些画面之所以能动起来是由动画设计者编好了程序,然后在电视上放出来,我们就可以看到动画了,你们如果学好了计算机画图,那你们也可以自己编动画了。
此外,还可以触及儿童的情感领域,唤起心灵的共鸣,由情感驱使学生要探究。无论是好奇、好动、求知,还是情感的需求,都促其形成一种努力去探究的心里。这种探究心理的形成,对具有好奇心、求知欲强的小学生来说,本身就是一种满足,一种乐趣,其过程可以简单地概括为:探究—满足—乐趣—内在动机产生,这就保证学生在接触新知时,带着积极的情感,主动地参与教学活动中去。
四、明确学习过程中的师生关系
在小学生学习数学的活动中经常碰到学生思维定势的消极影响,其产生的原因是什么,又该如何克服呢?
一、思维定势消极影响产生的原因
1.日常生活概念的干扰。
例如在几何初步知识教学中,学生往往易受词的生活意义的影响,假如词的生活意义和几何概念的科学意义一致,有利于概念的形成,反之则起负迁移功能。
如“垂直”在日常概念中总是下垂,是由上而下,所以当学生在接受“自线外一点向直线作垂线”时就由于日常生活经验的干扰,只能理解点在上方,线在下方这一种情况,以致产生认为点在其它方位时作垂线是不可能的错觉。
2.原有书写格式的干扰。
不同内容的知识,都有规范格式的书写要求。但对于小学生来说,由于其思维缺少批判、开拓的品质,往往轻易产生书写格式的错误干扰,表现为短时间内的不适应。常见的错误有摘要:①计算小数乘法时列竖式②求4的倒数是多少列式为4=1/4;?③将60分解质因数为2x2x3x5=60;④解方程受递等式的影响摘要:4X=80=80/4=20等等。
3.已有知识经验的干扰。
小学生受年龄和认知心理的局限,对数学的本质属性理解不深,轻易被非本质属性所述惑,由于已有知识经验的积累限制,对后面新知识轻易产生思维障碍。
如低年级学生学习实际数(量)进行比较的方法,小明比小英高13厘米,则小英比小明矮13厘米,到高年级学习分率比较时受前面知识的干扰,看到甲数比乙数多25%,则错误地推导出乙数比甲数少25%。
4.已有认知策略的干扰。
学生利用迁移规律通过已有知识的推导学习新知识,由此及彼,触类旁通,不失为提高教学效率的一种捷径。思维过程中的正迁移固然对学习有启迪功能,但已形成的认知策略对后继学习的消极影响也不可忽视。如有学生这样计算,产生错误的原因在于受已学过的带分数加减法法则摘要:“整数部分、分数部分分别相加减”的影响,结果误入歧途。
5.新知识对旧知识的后摄干扰。
如学生接连演算几道进位加法后,出现不进位的加法,有些学生仍然在前一位上进上1后再加,?即先前的演算经验形成一种动力状态,支配了眼前的演算思维而产生错误。再如学习了正方形的面积计算公式后对正方形的周长计算产生了负功能,部分学生分不清公式的适用范围。
6.教师教学习惯的干扰。
某些教师的教学习惯有时也会成为消极定势的根源。低年级教师往往因知识比较简单,教学中总是按照固定的思路(模式)讲课,学生被动地按照一定的程式机械重复地进行某种练习。心理学实验表明摘要:某种单一的信息反复刺激大脑,就会产生思路上的惯性,势必造成知觉偏差,易导致定势的消极效应。如在二年级教学除法应用题时,某教师作这样的小结摘要:列除法算式时总是较大数除以较小数,以致学生认为“3元钱买6支铅笔,平均每支铅笔多少钱?”列为“3÷6”是错误的。
二、克服思维定势消极影响的办法
1.建构促进调整。
消极心理因素的影响是随着熟悉结构的扩充和更新而产生,并又随着认知结构的更新和完善逐渐地部分地得到克服。只有建构才有利于“同化”、“顺应”,有利于消除思维定势的消极影响。如教学周长和面积时,可让学生比较左图中甲和乙谁的面积大?谁的周长长?以防学生受“面积大,周长也较长”这一不正确的经验的影响。因此教师应及时帮助学生扩充完善学生原有的认知结构。
2.变式防止泛化。
小学生对于相似刺激往往轻易产生泛化,这就要求应用变式的规律组织学习。
如“顶”和“底”的教学,可以画出不同位置的等腰三角形,使底边在顶角的上方、右方和其它位置,学生通过这些变式图形,就会排除“底”一定在“顶”下边的定势干扰,防止了思维僵化,从而正确理解几何图形中“底边”、“顶角”这些概念的本质。
3.比较扫除障碍。
有比较才有鉴别,有鉴别才能避免定势的负效应,把干扰及时消灭于萌芽状态之中。教师要善于指导学生运用比较方法,通过比较分析、找出异同、发现新问题,使学生对知识的可利用因素和易混的因素进行辨析分化,这是最有效的方法。
如“一根铁丝长5米,?①截下去1/2米,还剩多少米?②截下1/2还剩多少米?”
可启发引导学生主动参和比较,提高自觉克服负效应的积极性。
4.反馈利于强化。
一般地说,学生初步练习时产生的错误在教师的指导下比较轻易纠正和克服。
因此教师应及时地纠正学生的不良思维习惯,强化正确的思维方法。
5.反思克服惰性。
教学中要帮助学生形成反思和评价的习惯,善于从策略上、方法上评价和反思,?可使学生不拘常规、不死套模式,加速思维的优化和畅通。(1)鼓励学生多思、多想、善思、会想,如教学4600÷1500时,可启发学生想摘要:①怎样算简便?
②余数是100还是1??为什么??这样可以提高学生思维的深度,提高思维质量。
(2)?多角度多方向的解题。学生解题时常会按习惯了的单一思路去思索数学新问题,教学中要鼓励学生多角度变换思维方向。比较2/17、3/19、5/23的大小,可另辟捷径用统一分子的方法去解决,以克服思维的依靠性、呆板性、懒惰性,提高思维的灵活性。
由于各种不同的因素,学生在数学知识、技能、能力方面和志趣上存在差异,因此教学中要承认这种差异,区别对待,因材施教,因势利导。教学中,宜从学生的实际出发兼顾学习有困难和学有余力的学生,通过多种途径和方法满足他们的学习要求,发挥他们的数学才能。
2.进行思想品德教育
现代教育是以人为本的教育,是为人和社会的可持续性发展而教。在教会学生学科知识的同时更重要的还是教他们学会做人,树立科学的世界观和人生观。
3.重视基础知识的教学、基本技能的训练和能力的培养
知识、技能和能力三者的关系是互相依存、互相促进的。能力是知识的教学过程和技能的训练过程中,通过数学思想的形成和数学方法的掌握才能得到培养和发展;同时能力的提高又会加速加深对知识的理解和技能的掌握。在教学中,要突出重点,抓住关键,解决难点。要引导学生在学习好概念的基础上,掌握数学的规律,进行基本技能训练,着重培养学生的能力。
4.重视创新意识和实践能力的培养
在教学中要激发学生学习数学的好奇心,不断追求新知识,要启发学生能够多发现问题和提出问题,善于独立思考,要学会分析问题和创造性地解决问题,使数学成为再创造、再发现的教学。在教学中,要增强用数学的意识,一方面应使学生通过背景材料进行观察、比较、分析、综合,抽象和得出数学概念及其规律;另一方面更重要的是使学生能够用已有的知识进行交流,能将实际问题抽象为数学问题,建立数学模型,从而形成比较完全的数学知识。
5.改进教学方法,正确组织练习
数学教师必须转变教育观念,转变传统的教育模式。积极实行启发式、讨论式、自辅式等以学生为主体的教学。弘扬新的学生观,重视师生、生生的好都互动交流,培养学生的科学精神和创新意识,激发学生独立思考,让学生感受、理解知识的产生和发展过程。引导学生“被动”学习为“主动”学习,转变教会学生知识为教会学生学习。
练习是数学教学的有机组成部分,是学生学好数学的必要条件。练习有对知识的理解功能、释疑功能、深化功能及反馈功能。教师在教学中要注意在恰当的时间选择恰当的练习来发挥其作用,并加强对解题的指导,对解题思想方法作必要的概括。
在新课程改革的推行下,要求教师更新科学的教育理念,使用科学的教学方法进行教学.尤在高中数学这一门科学性较强的学科中实行科学的教学模式是十分重要的,不仅影响着教师教学的严谨性,还影响着学生接受的知识的正确性.高中数学应提倡科学的教育理念,加强教学的科学性,但如何做到科学教学,仍有待解决.本文意在探讨如何在科学教育理念下,进行科学教学的策略.
一、科学培养学生自主探究学习能力
学习是一名学生提升自身能力的过程,需要教师在教学过程中给予学生充分的自主学习时间和空间.这就要求教师摒弃以往一味照本宣科、学生麻木接受的教学模式,而是要不断更新科学的教学理念,提倡让学生自主探究、动手实践、交流合作、阅读学习的教学模式,让学生学会自主学习、积极探究学习.通过培养学生自主探究学习,可开发学生的创造性思维、培养学生的动手能力.例如,在教“排列组合”这一节教学内容时,教师可提出一个探究性较强且可以让学生动手实践探索答案的问题:彩票中,双色球获得一等奖的可能性有几种?然后让学生以小组的形式自行讨论和探索,比赛看哪个小组可以又快又准确的探索出答案.学生通过自由讨论、自主探索,可以自主探索出答案,加深对“排列组合”这一内容的了解.教师通过让学生自主探究学习的教学模式,可以形成学生自主学习的习惯,培养学生的实践能力.
二、科学培养学生数学思维能力
数学是一门开创思维的学科,也是一门实用的基础学科,对学生的基础知识积累与实践能力培养起着重要作用,尤其可以提升学生的数学思维能力.因此,教师在进行数学教学的过程中,不仅要做好数学知识的传授,还应加强学生数学思维能力的培养.通过培养学生观察发现、演绎证明、抽象概括、运算求解、空间想象、数据处理、归纳类比等数学思维能力,使学生可以对客观事物中蕴含的数学知识进行思考和判断.例如,在教“空间几何体”这一节内容时,教师可提问学生:在我们的日常生活中,同学们可以发现多少种形状的建筑物?这些建筑有什么几何结构特征?引导学生回想所见过的建筑,让学生以小组的形式进行讨论、相互交流几何体的特征,并请学生举例回答.通过讨论后学生均会对几何体有所了解,此时教师应展示出台、锥、柱、球等结构特征的空间物体,并顺势提问学生:同学们刚才所举的建筑都是由这些几何体组合成的,那么谁能通过观察这些空间物体而将它们进行分类,并说出你是根据什么标准来进行分类的?学生通过将所见过的建筑物和教师展示的空间物体进行对比思考后,会对其中的规律有所了解,此时教师可顺势导入“空间几何体”这节课的中心内容.通过引导对几何体联想的方式,不仅可以加深学生对几何体知识的了解,还可以培养学生空间想象的数学思维能力.
三、科学设计课堂教学方案
数学是一门逻辑性较强的学科,学习时需要较强的抽象思维,因而使得抽象思维较差的学生学习时难以掌握和理解,致使其失去学习数学的兴趣.同时,各种抽象的立体图形、无线循环的数字、复杂的公式等均让学生感觉索然无味,难以引起学生的兴趣与积极性.因此,教师要不断改变和更新陈旧的教学方法,科学设计能够引起学生兴趣,吸引学生注意力的教学方案,以激发学生学习的积极性和热情.例如,在教“不等式运用”这一节内容时,教师可以利用多媒体进行教学,播放一些五颜六色的礼物盒子照片,然后提出一个富有趣味的问题:去过礼品店的同学肯定知道,礼品店内的礼品都是用五颜六色、精美的包装纸包装的,现在店长遇到一个问题,她要包装一个特别的礼物,但是她只有一张长40cm、宽30cm的彩纸,她要用这张纸包装礼物,那么她可以做多大的礼物盒子呢?学生们联想到精美、漂亮的礼物盒子,而引起探究的兴趣,从而对问题进行思考,学生在思考未果时教师可导入这节课的学习内容,并教会学生使用不等式对问题进行运算,很快学生便能解答出自己感兴趣的问题答案.通过引起学生兴趣的教学模式,不仅教会学生运用所学知识解决生活中的问题,还可让学生深刻领会课堂教学的知识内容.