欢迎来到速发表网!

关于我们 登录/注册 购物车(0)

期刊 科普 SCI期刊 投稿技巧 学术 出书

首页 > 优秀范文 > 评估方法论文

评估方法论文样例十一篇

时间:2023-03-30 11:37:45

序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇评估方法论文范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!

评估方法论文

篇1

企业价值评估是将一个企业作为一个有机整体,依据其拥有或占有的全部资产状况和整体获利能力,并充分考虑影响企业获利能力的诸因素,对企业整体公允市场价值进行综合性评估。企业价值评估方法有成本法,收益法和市场法。

一、企业价值评估方法选择的原则

(一)客观公正的原则

客观性原则要求在选择价值评估方法的时候应始终站在客观的立场上,坚持以客观事实为依据的科学态度,尽量避免用个人主观臆断来代替客观实际,尽可能排除人为的主观因素,摆脱利益冲突的影响,依据客观的资料数据,进行科学的分析、判断,选择合理的方法。公正性原则要求评估人员客观的阐明意见,不偏不倚的对待各利益主体。客观、公正这一原则不仅具有方法选择上的指导意义,而且从评估人员素质的角度对方法选择做了要求。

(二)成本效率的原则

评估机构作为独立的经济主体之一,也需要获取利润以促进企业的生存、发展,因而在评估方法选择时,要考虑各种评估方法耗用的物质资源、时间资源及人力资源,在法律、规范允许的范围内及满足委托企业评估要求的前提下,力求提高效率、节约成本。只有如此,才能形成委托企业和评估机构互动发展的双赢模式,更有利于评估机构增强自身实力,提高服务水平。

(三)风险防范的原则

企业价值评估的风险可以界定为:“由于评估人员或者机构在企业价值评估的过程中对目标企业的价值作了不当或错误的意见而产生的风险”,根据这一定义,企业价值评估中的风险可分为外部风险和内部风险。外部风险是指评估机构的外部因素客观上阻碍和干扰评估人员对被评估企业实施必要的和正常的评估过程而产生的风险。内部风险是指由于评估机构的内部因素导致评估人员对拟评估企业的价值作了不当或错误的意见而产生的风险。显然,企业价值评估方法的选择作为价值评估中的一个环节,可能会由于方法选择的不当带来评估风险。基于此,在选择评估方法的时候要有强的风险防范意识,综合考虑各种因素,分析可能产生的评估风险,做出客观、合理的价值评估方法选择。

二、企业价值评估方法运用的条件

(一)运用成本法进行企业价值评估的条件

一是进行价值评估时目标企业的表外项目价值,如管理效率、自创商誉、销售网络等,对企业整体价值的影响可以忽略不计;二是资产负债表中单项资产的市场价值能够公允客观反映所评估资产的价值;三是投资者购置一项资产所愿意支付的价格不会超过具有相同用途所需的替代品所需的成本。

(二)选择收益法进行企业价值评估的条件

一是投资主体愿意支付的价格不应超过目标企业按未来预期收益折算所得的现值;二是目标企业的未来收益能够合理地预测,企业未来收益的风险可以客观地进行估算,也就是说目标企业的未来收益和风险能合理的予以量化;三是被评估企业应具持续的盈利能力。

(三)采用市场法进行企业价值评估的条件

一是要有一个活跃的公开市场,公开市场指的是有多个交易主体自愿参与且他们之间能进行平等交易的市场,这个市场上的交易价格代表了交易资产的行情,即可认为是市场的公允价格;二是在这个市场上要有与评估对象相同或者相似的参考企业或者交易案例;三是能够收集到与评估相关的信息资料,同时这些信息资料应具有代表性、合理性和有效性。三、企业价值评估方法的运用

(一)成本法的运用

成本法是指在评估一个企业价值时,把这个企业的全部资产按评估时的现时重置资本扣减各项损耗来计算企业价值的方法。成本法评估企业价值,实际上就是在资产清查和审计的基础上将企业整体资产化整为零,以单项资产的评估为起点,对各项有形资产、无形资产分别根据各自的特点和使用状况,用重置资本减去贬值来确定各组成要素资产的个别价值,最后将全部资产进行加和。一个企业的整体价值并不等于企业各单项资产的价值之和,单项资产组合需要组织成本,组合后的资产整体价值还会发生增值。对一个企业的价值评估,主要是对发生了增值的资产整体进行评估,是对其未来服务潜能产生的收益评估。换言之,价值评估应该是对企业内在价值、经济价值的评估,着眼于未来。而成本法着眼于现在资产的重置价值,所以从严格意义上来说,成本法并不是评估企业价值的方法。当然,成本法非常适合每一单项资产的单独评估,我国目前还处于计划经济向市场经济的转轨阶段,市场经济不完善,产权交易市场不发达,大量的国有和集体企业要进行改制重组、拍卖兼并,没有交易活跃的市场作比较,只能对企业实有资产进行客观的评估。

(二)收益法的运用

收益法通常又被称作收益现值法。我们在进行资产评估时有一个重要的方法是收益现值法。收益现值法是指通过估算被评估资产在未来尚可使用年限内的预期收益,并采用适当的折现率折现成现值,然后累加求和,得出被评估资产的评估值的一种资产评估方法。运用收益现值法进行资产评估时,是以该资产投入使用后连续获利为基础的。另外,投资者投资购买该项资产时,一般要进行可行性分析,其预计的内部回报率只有在超过评估时的折现率时才肯支付相应货币额来购买该项资产。收益法通常被认为比成本法和市场法更适用于企业价值评估,特别是在涉及为企业并购服务时。收购者投资于目标企业是预期能获取未来收益,但是这种预期的未来收益因具有不确定性而蕴含着风险。收益法为量化影响企业价值的这些关键变量提供了路径。但是,并非所有的企业价值评估均适用收益法。在运用收益法对企业价值进行评估时,必要的前提是判断企业是否具有持续的盈利能力且能够被合理的计量。只有当企业具有持续的盈利能力且能够被合理的计量时,运用收益法对企业进行价值评估才具有意义。

(三)市场法的运用

经济理论和生活常识告诉我们,类似的资产应该有类似的价格,一个理性的投资者,在一个公开透明的市场上,购买一项资产的价格,不会高于有相同效用的替代品的价格。我们对一个企业的价值进行评估,通过比较市场上相似或相近的可比企业公允交易价格,经过类比分析,适当修正后得到目标企业的价值,这就是市场法。在市场经济发达的国家,企业交易市场活跃,人们对企业价值的判断更信赖于市场的眼光。市场交易的价格更具有说服力,它是被交易企业对于购买者的内在经济价值,投资者购买了它,说明它能够为购买者带来现金流量。而用现金流量折现法计算企业的价值,当这个企业一直亏损时,无法预测其现金流量,但假若这个企业有很大的改造潜力,或其自身存在多年已具有一定知名度,有一定的客户资源和销售市场,投资人购买这个企业后进行重整,完全可以使其变为盈利企业,为投资者带来滚滚财源。所以用市场法可以评估企业的真实内在价值,因基于市场导向,接近现实,故容易为当事各方所接受和理解。

【参考文献】

[1]成京联,阮梓坪.论企业价值理论与企业价值评估[J].求索,2005,(10).

篇2

图书馆绩效评估即:“图书馆提供服务的效能,以及拨款和资源利用在提供服务中的效率”,就是对图书馆的各项资源的投入和产出的效益进行评价和测度。

一、图书馆绩效评估体系的建立

根据2001年的《国家图书馆绩效评估指标体系》,图书馆的绩效评估(P)体系分为资源(Z)、基础业务工作(J)、业务研究(Y)、管理(G)、读者服务(D)五大部分。本文在参考可大量文献的基础上,列出了如图所示由目标层、准则层及指标层的阶梯结构图书馆绩效评估体系。

二、基于层次分析法的图书馆绩效评估

层次分析法是一种定量与定性相结合的系统分析方法。其步骤如下:通过调查,对各个方面及指标的重要性进行两两比较,以九级分制对矩阵进行赋值,计算出判断矩阵的最大特征根max和对应的特征向量W,在满足一致性比率CR<0.1的情况下,特征向量W所对应的即是所求权重,否则需对判断矩阵进行调整直至具有满意的一致性为止。

1.权重确定

根据图书馆绩效评估体系可以构造出两两判断矩阵,即将准则层与目标层、指标层与其对应准则层的重要性进行两两判断。以某一高校图书馆为例,通过专家进行打分法,构造出如表1、表2的判断矩阵。

表1中可以得出图书馆绩效评估中各部分的权重依次是:资源(Z)占48%,读者服务(D)占25%,基础业务(J)占18%,业务研究(Y)占7%,管理(G)占4%,这也与图书馆的基本功能相符。

对于具体指标对基础业务(J)、具体指标对业务研究(Y)、具体指标对管理(G),以及具体指标对读者服务(D)的判断矩阵的结构形式与表2类似,其计算结果在表3中能够反应出来,在此略之。

2.绩效评估

表3是图书馆绩效评估总表。每一指标对图书馆绩效评估的合成权重(即根据权系数合成原理),是将每一指标对准则层的权重乘以所属准则层对目标层的权重;专家打分是请相关专家对当年图书馆每一具体指标以五分制进行的评价打分;每一指标的绩效分值就是该指标的专家打分乘以合成权重;最后将所有指标的绩效分值加总得到该图书馆当年绩效评估的综合得分。

由表3可知该图书馆当年绩效评估的综合得分是4.096。说明该图书馆各项资源的投入产出效益较好。但该图书馆绩效还有一些有待提高的地方,例如该馆权重排名第二、三位的指标,以及基础业务(J)的各项,专家打分均不高,说明该馆在这些方面还存在着不足之处。

三、结语

介绍了图书馆的绩效评估体系及应用层次分析法进行绩效评估的方法并结合某高校图书馆进行了实证分析。本文着重于绩效评估的示范研究,以期抛砖引玉,促进绩效评估工作的推广与应用。

参考文献:

[1]余胜:关于图书馆绩效评估的研究与实践.中国图书馆学报[J],2006(4):101-104

[2]富平:确立绩效评估体系进一步完善国家图书馆科学管理.国家图书馆学刊[J],2002(2):6-12

篇3

(一)对评税机构设置的选择

在已实行税基评估制度的国家和地区中,有些国家和地区的评税主体为代表征税方的评估主体(政府或准政府机构性质的评估机构和人员)和代表纳税方的评估主体(往往是民间性质的社会中介评估机构或人员)共同来承担。但也有一些国家和地区,其税基评估机构主体是单一的。这种单一评估主体的确定有两种方法,一种是由非税务部门的政府或准政府性质的评估机构和人员来承担的,另一种是由民间性质的社会中介评估机构和人员来承担。这种单一税基评估主体往往会产生一些问题,其中最主要的问题就是由代表单方利益的评估机构作为税基评估主体时,其对税基的评估结果可能有失客观、公正和公平。

我国有不少专家建议由税务部门作为税基评估的行为主体。但是,假如由税务部门来负责整个辖区内的房产价值评估,必然要新增大量人员,这与我国政府机关人事制度改革目标不符,更重要的是,税务部门并非是对房产价值进行评估的专业机构,由它来评估不仅缺乏说服力,还将大大增加征税成本。

因此,在建立我国税基评估制度时,对评估机构的选择可以按下列顺序进行:(1)选择分别代表征、纳税双方的机构或人员作为评估主体,改变以往一直由征税部门单方面作为评估主体的状况。这一选择既能保证税基评估结果的公正性和公平性,又能保证征、纳税双方的合法权益。(2)假如我国税基评估还不能实行分别由代表征、纳税双方的两个以上的评估主体来承担时,则可以选择民间的社会中介评估机构作为评估主体,这样既可以发挥现有的社会中介评估行业的作用,又可以在一定程度上减轻政府部门的财政负担。当然,需要先对中介机构和人员进行税法及税基评估相关专业知识的培训。(3)如果我国税基评估只能由政府或准政府的机构作为评估主体,那么,为保证税基评估结果的公正性和公平性,税基评估的行为主体应由税务部门以外的政府部门来承担。在国外,由政府单方承担税基评估工作的,其评估主体也大多不是直接进行征税的部门。

(二)房地产税税基评估周期

以市场价值作为基础,对房地产按评估值进行征税,必须要考虑到市场价值变动的影响。因此,房地产计税依据的评估应定期进行。评估周期的长短主要受三方面因素影响:一是经济发展和其他因素(通货膨胀或环境改善带来的房地产增值等);二是受制于重新进行评估的成本;三是房地产计税依据类型和是否具备现代化的计算机系统及合格的评估人员也在一定程度上影响评估周期。从实行财产税的国家来看,法国最近一次的财产税税基评估发生在1970年,从20世纪80年代开始每年对应税财产值作指数化调整;美国的一些地方每年或每两年进行一次财产税税基的重新评估:在丹麦,1982~1998年之间每个不评估的年份实行指数调整,从1998年开始决定每年都进行全面的重新评估;德国采用的计税依据是土地与地上建筑物价值,由于其经济发展较为稳定,市场价值变化不明显,其课税评估周期为6年,而事实执行的评估周期在6年以上。

我国在房地产税立法时,应在税法中明确规定税基评估的周期。就我国目前的情况而言,经济仍处于转型和上升期,经济波动在不同年份间表现得较为明显,房地产市场价值受经济发展及通货膨胀因素影响较大,评估周期不宜定得过长。同时,我国不同地区之间社会及经济发展不平衡,地区差异明显,评估周期不宜采取一刀切的办法,建议可由国家确定一个浮动期间,如在3~5年之间,由各省根据实际情况具体确定。这样,既可保证计税价格相对稳定,又能体现经济发展、环境改善等因素所带来的市场价值变化,保证财政收入目标的实现。

(三)申诉安排

房地产计税依据的评估量大面广,且其中涉及的因素及技术问题较为复杂.纳税人对评估值产生异议在所难免.因此,相关的法律法规应作出安排,以保证纳税人对评估结果申诉的权利。首先,在组织上.各地应设立独立于评估部门的专门的复核委员会,并组成评估专家团,在组织上保持独立性和权威性;复核委员会的主要任务是处理纳税人的申诉,以确保税负的公平和一致性;其次,要保证纳税人的知情权,税务机关对房地产计税依据进行评估后,应将初评的结果及房地产的有关资料在正式征收之前公布在有关的媒体或网站上,并给予一定的申诉期。在申诉期内,如果业主对计税价格持有异议,可以向评估机构申诉,若对申诉结果仍不满意的,业主可以向当地复核委员会申请复核,复核委员会应尽快将结果书面通知业主和相关评估机构,最终的计税价格应更加客观公正。

二、房地产税税基评估方法和技术

在房产价值评估中,不同的评估方式、参数选择和评估人员评出的房地产价值往往千差万别。如果这个问题解决不了,不仅会导致估值的混乱,导致房地产税不稳定和评估效率的低下,更重要的是,会导致权力寻租。要避免这些弊端,就必须确定一个便于操作的、明确的能被广泛认可的评估标准,这一标准既包括评估方法的选择、各类参数指标的选择,也包括调整、修正的幅度等等,以最大限度地确保评估标准的刚性而减少评估人员可以自由发挥的空间。

(一)基本评估方法

房地产税合理、准确的计税依据应是土地使用权和房产所有权的市场价值,计税的市场价值是通过评估得出的,但评估值的表现有多种形式。不同的评估方法将得出不同结果。常用的方法有市场比较法、收益还原法、重置成本法。从房地产评估实践来看,即使是同一房地产,采用这三种方法评估所得的结果有时也相差较大。一般而言(不考虑农用地),成本法的评估结果低于收益法的评估结果,而市场比较法的评估结果介于成本法和收益法之间。这是因为:成本法是从供给角度出发,收益法是从需求角度出发,而市场比较法则是从供求均衡角度出发的,供求双方达成交易的条件是使房地产使用带来的收益要大于或至少等于房地产的成本,其超额部分将由供求双方分享。此外,三种评估方法在具体应用过程中也受到一些条件的限制,存在不足之处。

采用市场比较法,需要有充足的房地产交易的完善交易资料,不适用于较少在市场上交易的应税房地产。如在一些房地产市场尚不成熟的地区,就很难采用这种方法进行估价。收益还原法的基本思想虽简单明了,但是在计算中确定适当的利率和预测房地产未来纯收益并不容易。对于没有收益的房地产或者收益无法预测的房地产,无法采用收益法实施评估,而且未来收益的估算也受到企业经营管理水平的影响。在实际操作中,还原利率的确定随意性大,往往对评估结果产生较大影响。从理论上讲.只要是可以估算其成本的房地产,都可以采用成本估价法。但是,现实生活中房地产的价格取决于其效用,而不是所花费的成本;房地产成本的增加并不一定能增加其价值,投入成本不多也不一定说明其价值不高。另外,采用成本法进行估价比较费时费力。难度最大的是折旧的计算,尤其是对陈旧的房地产,往往以估价人员的主观判断为依据,同样会影响估价的准确性。

国际上以市场价值为房地产税计税依据的国家通常是区分不同情况,如数据资料情况、市场状况、待评估房地产特点等,同时采用多种方法。具体而言,对于交易经常发生且有完善交易资料的房地产类型应优先采用市场比较法,如商品房、商业铺面等:对于一些很少发生转让而用于营利目的的房地产可采用收益还原法,如经济落后的地区,房地产市场发育不完全,缺少可比较的交易资料,可选择收益还原法;而对于一些特殊的房地产,既无法获得可比较的交易资料又无法通过使用者的角度确认其收益的,可采用成本重置法

(二)税基评估技术--批量评估

同其他目的的评估不同,为得出房地产税的税基,要求同时对大量的房地产进行评估,工作量大且密集;另外其他评估行为中往往对特定房地产进行个别评估,个别评估的成本对于税收行政来说是难以接受的。为保证房地产税的行政效率,需要将其征管成本中的评估成本有效控制在一定的范围之内。控制评估成本的目的通过运用批量评估实现。

在对不动产征收财产税的国家中,税基的批量评估已被广泛应用。批量评估的过程包括两个步骤:(1)对辖区内所有不动产进行基础数据的采集,数据采集渠道应着重从以下方面考虑:建立财产登记制度,通过要求纳税人定期或不定期地向税务机关申报,逐步掌握全市纳税人的房地产税源数据;建立与统计部门、房土管理部门等相关政府部门的数据资源共享机制,获取房地产交易数据、成本数据、收益数据等市场数据;与房地产中介公司合作,获取房地产市场数据。内容包括不动产位置、土地面积和允许用途、建筑物的面积、年代、材料、质量等,大量不动产的基本信息经过整理,储存在特定的数据库中,这样的数据库一般被称为财政房地产簿。(2)估价,首先要进行市场分析。市场分析的目的是要确定位置、土地面积、建筑物面积和质量,以及其他种种因素对不动产市场价值的影响.分析的结果是将上述各因素和市场价值的关系通过估价模型的方式表现出来。估价模型可能是数学型,也可能是列示各种类型的土地和房产的单位面积价值的图表。一旦估价模型建立,就可以将待估不动产基本信息逐个输入,得出评估值。值得注意的是,对上述批量评估得出的评估值,评估人员需要进行适当检查以确定其是否符合市场价值,对具有明显特性(特殊位置、特殊用途等)的不动产更需要仔细地复查。

篇4

论文名称:基于bp神经网络的技术创新预测与评估模型及其应用研究

课题来源:单位自拟课题或省政府下达的研究课题

选题依据:

技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

二、本课题国内外研究现状及发展趋势

现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

(1)趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家raymondpearl提出的pearl曲线(数学模型为:y=l∕[1+a?exp(-b·t)])及英国数学家和统计学家gompertz提出的gompertz曲线(数学模型为:y=l·exp(-b·t))皆属于生长曲线,其预测值y为技术性能指标,t为时间自变量,l、a、b皆为常数。ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。

(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

(3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。

趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推,而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测,但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式,而所得到的回归预测模型往往只能考虑少数几种主要影响因素,略去了许多未考虑的因素,所以,所建模型对实际问题的表达能力也不够准确,预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验,往往带有主观性,难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献,为企业技术创新的预测提供了科学的方法论,但在新的经济和市场环境下,技术创新预测的方法和技术应有新的丰富和发展,以克服自身的不足,更进一步适应时展的需要,为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

目前,在我国企业技术创新评估中,一般只考虑如下四个方面的因素:(1)技术的先进性、可行性、连续性;(2)经济效果;(3)社会效果;(4)风险性,在对此四方面内容逐个分析后,再作综合评估。在综合评估中所用的方法主要有:delphi法(专家法)、ahp法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等,但技术创新的评估是一个非常复杂的系统,其中存在着广泛的非线性、时变性和不确定性,同时,还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法,难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究,在我国的历史还不长,无论是指标体系还是评估方法,均处于研究之中,我们认为目前在企业技术创新评估方面应做的工作是:(1)建立一套符合我国实际情况的技术创新评估指标体系;(2)建立一种适应于多因素、非线性和不确定性的综合评估方法。

这种情况下,神经网络技术就有其特有的优势,以其并行分布、自组织、自适应、自学习和容错性等优良性能,可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题,它能克服上述各方法的不足。本项目以bp神经网络作为基于多因素的技术创新预测和评估模型构建的基础,bp神经网络由输入层、隐含层和输出层构成,各层的神经元数目不同,由正向传播和反向传播组成,在进行产品技术创新预测和评估时,从输入层输入影响产品技术创新预测值和评估值的n个因素信息,经隐含层处理后传入输出层,其输出值y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置,考虑了概括性和动态性,力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素,尽管是黑匣子式的预测和评估,但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合,输出一个经非线性变换后较为精确的预测值和评估值。据文献查阅,虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等,但尚未发现将神经网络应用于技术创新预测与评估方面的研究,在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,以神经网络为基础来建立产品技术创新预测与评估模型,是对技术创新定量预测和评估方法的有益补充和完善。

三、论文预期成果的理论意义和应用价值

本项目研究的理论意义表现在:(1)探索新的技术创新预测和评估技术,丰富和完善技术创新预测和评估方法体系;(2)将神经网络技术引入技术创新的预测和评估,有利于推动技术创新预测和评估方法的发展。

本项目研究的应用价值体现在:(1)提供一种基于多因素的技术创新定量预测技术,有利于提高预测的正确性;(2)提供一种基于bp神经网络的综合评估方法,有利于提高评估的科学性;(3)为企业的技术创新预测和评估工作提供新的方法论和实用技术。

四、课题研究的主要内容

研究目标:

以bp神经网络模型为基础研究基于多因素的技术创新预测和评估模型,并建立科学的预测和评估指标体系及设计相应的模型计算方法,结合企业的具体实际,对指标和模型体系进行实证分析,使研究具有一定的理论水平和实用价值。

研究内容:

1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手,密切结合电子商务和知识经济对企业技术创新的影响,系统综合地分析影响产品技术创新的各相关因素,建立科学的企业技术创新预测和评估指标体系,并研究其量化和规范化的原则及方法。

2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时,需要一组决定其相对重要性的初始权重,权重的确定需要基本的原则作支持。

3、基于bp神经网络的技术创新预测和评估模型研究。根据技术创新预测的特点,以bp神经网络为基础,构建基于多因素的技术创新预测和评估模型。

4、基于bp神经网络的技术创新预测和评估模型计算方法设计。根据基于bp神经网络的技术创新预测和评估模型的基本特点,设计其相应的计算方法。

5、基于bp神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料,构建基于bp神经网络的技术创新预测和评估模型的学习样本,对预测和评估模型进行自学习和训练,使模型适合实际情况。

6、基于bp神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景,对基于bp神经网络的技术创新预测和评估技术进行实证研究。

创新点:

1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面,一种是采用传统的指标体系,另一种是采用国外先进国家的指标体系,如何结合我国实际当前经济形势,参考国外先进发达国家的研究工作,建立一套适合于我国企业技术创新预测和评估指标体系,此为本研究要做的首要工作,这是一项创新。

2、研究基于bp神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能,能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题,本项目首次将神经网络技术引入企业的技术创新预测和评估,这也是一项创新。

五、课题研究的基本方法、技术路线的可行性论证

1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素,并研究影响因素间的内在联系,确定其相互之间的重要度,探讨其量化和规范化的方法,将国外先进国家的研究成果与我国具体实际相结合,建立我国企业技术创新预测和评估的指标体系。

2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中,发现问题、分析问题,归纳和总结出具有共性的东西,探索技术创新预测与宏观因素与微观因素之间的内在关系。

3、采用先简单后复杂的研究方法。对基于bp神经网络的技术创新预测和评估模型的研究,先从某一行业出发,定义模型的基本输入因素,然后,逐步扩展,逐步增加模型的复杂度。

4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合,进行实证研究,在实践中丰富和完善,研究出具有科学性和实用性的成果。

六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

本人长期从事市场营销和技术创新方面的研究工作,编写出版了《现代市场营销学》和《现代企业管理学》等有关著作,发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文,对企业技术创新的预测和评估有一定的理论基础,也从事过企业产品技术创新方面的策划和研究工作,具有一定的实践经验,与许多企业有密切的合作关系,同时,对神经网络技术也进行过专门的学习和研究,所以,本项目研究的理论基础、技术基础及实验场所已基本具备,能顺利完成本课题的研究,取得预期的研究成果。七、论文研究的进展计划

xx.07-xx.09:完成论文开题。

xx.09-xx.11:影响企业技术创新发展的指标体系研究及其量化和规范化。

xx.11-xx.01:基于bp神经网络的技术创新预测和评估模型的构建。

xx.01-xx.03:基于bp神经网络的技术创新预测和评估模型计算方法研究。

xx.03-xx.04:基于bp神经网络的技术创新预测和评估模型体系的实证研究。

xx.04-xx.06:完成论文写作、修改定稿,准备答辩。

主要参考文献:

[01]傅家骥、仝允桓等.技术创新学.北京:清华大学出版社1998

[02]吴贵生.技术创新管理.北京:清华大学出版社xx

[03]柳卸林.企业技术创新管理.北京:科学技术出版社1997

[04]赵志、陈邦设等.产品创新过程管理模式的基本问题研究.管理科学学报.xx/2.

[05]王亚民、朱荣林.风险投资项目ecv评估指标与决策模型研究.风险投资.xx/6

[06]赵中奇、王浣尘、潘德惠.随机控制的极大值原理及其在投资决策中的应用.控制与决策.xx/6

[07]夏清泉、凌婕.风险投资理论和政策研究.国际商务研究.xx/5

[08]陈劲、龚焱等.技术创新信息源新探.中国软科学.xx/1.pp86-88

[09]严太华、张龙.风险投资评估决策方法初探.经济问题.xx/1

[10]苏永江、李湛.风险投资决策问题的系统分析.学术研究.xx/4

篇5

课题来源:单位自拟课题或省政府下达的研究课题

技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

二、本课题国内外研究现状及发展趋势

现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

(1)趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家raymondpearl提出的pearl曲线(数学模型为:y=l∕[1+a?exp(-b·t)])及英国数学家和统计学家gompertz提出的gompertz曲线(数学模型为:y=l·exp(-b·t))皆属于生长曲线,其预测值y为技术性能指标,t为时间自变量,l、a、b皆为常数。ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。

(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

(3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。

趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推,而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测,但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式,而所得到的回归预测模型往往只能考虑少数几种主要影响因素,略去了许多未考虑的因素,所以,所建模型对实际问题的表达能力也不够准确,预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验,往往带有主观性,难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献,为企业技术创新的预测提供了科学的方法论,但在新的经济和市场环境下,技术创新预测的方法和技术应有新的丰富和发展,以克服自身的不足,更进一步适应时展的需要,为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

目前,在我国企业技术创新评估中,一般只考虑如下四个方面的因素:(1)技术的先进性、可行性、连续性;(2)经济效果;(3)社会效果;(4)风险性,在对此四方面内容逐个分析后,再作综合评估。在综合评估中所用的方法主要有:delphi法(专家法)、ahp法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等,但技术创新的评估是一个非常复杂的系统,其中存在着广泛的非线性、时变性和不确定性,同时,还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法,难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究,在我国的历史还不长,无论是指标体系还是评估方法,均处于研究

之中,我们认为目前在企业技术创新评估方面应做的工作是:(1)建立一套符合我国实际情况的技术创新评估指标体系;(2)建立一种适应于多因素、非线性和不确定性的综合评估方法。

这种情况下,神经网络技术就有其特有的优势,以其并行分布、自组织、自适应、自学习和容错性等优良性能,可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题,它能克服上述各方法的不足。本项目以bp神经网络作为基于多因素的技术创新预测和评估模型构建的基础,bp神经网络由输入层、隐含层和输出层构成,各层的神经元数目不同,由正向传播和反向传播组成,在进行产品技术创新预测和评估时,从输入层输入影响产品技术创新预测值和评估值的n个因素信息,经隐含层处理后传入输出层,其输出值y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置,考虑了概括性和动态性,力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素,尽管是黑匣子式的预测和评估,但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合,输出一个经非线性变换后较为精确的预测值和评估值。

据文献查阅,虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等,但尚未发现将神经网络应用于技术创新预测与评估方面的研究,在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,以神经网络为基础来建立产品技术创新预测与评估模型,是对技术创新定量预测和评估方法的有益补充和完善。

三、论文预期成果的理论意义和应用价值

本项目研究的理论意义表现在:(1)探索新的技术创新预测和评估技术,丰富和完善技术创新预测和评估方法体系;(2)将神经网络技术引入技术创新的预测和评估,有利于推动技术创新预测和评估方法的发展。

本项目研究的应用价值体现在:(1)提供一种基于多因素的技术创新定量预测技术,有利于提高预测的正确性;(2)提供一种基于bp神经网络的综合评估方法,有利于提高评估的科学性;(3)为企业的技术创新预测和评估工作提供新的方法论和实用技术。

四、课题研究的主要内容

以bp神经网络模型为基础研究基于多因素的技术创新预测和评估模型,并建立科学的预测和评估指标体系及设计相应的模型计算方法,结合企业的具体实际,对指标和模型体系进行实证分析,使研究具有一定的理论水平和实用价值。

1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手,密切结合电子商务和知识经济对企业技术创新的影响,系统综合地分析影响产品技术创新的各相关因素,建立科学的企业技术创新预测和评估指标体系,并研究其量化和规范化的原则及方法。

2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时,需要一组决定其相对重要性的初始权重,权重的确定需要基本的原则作支持。

3、基于bp神经网络的技术创新预测和评估模型研究。根据技术创新预测的特点,以bp神经网络为基础,构建基于多因素的技术创新预测和评估模型。

4、基于bp神经网络的技术创新预测和评估模型计算方法设计。根据基于bp神经网络的技术创新预测和评估模型的基本特点,设计其相应的计算方法。

5、基于bp神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料,构建基于bp神经网络的技术创新预测和评估模型的学习样本,对预测和评估模型进行自学习和训练,使模型适合实际情况。

6、基于bp神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景,对基于bp神经网络的技术创新预测和评估技术进行实证研究。

1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面,一种是采用传统的指标体系,另一种是采用国外先进国家的指标体系,如何结合我国实际当前经济形势,参考国外先进发达国家的研究工作,建立一套适合于我国企业技术创新预测和评估指标体系,此为本研究要做的首要工作,这是一项创新。

2、研究基于bp神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能,能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题,本项目首次将神经网络技术引入企业的技术创新预测和评估,这也是一项创新。

五、课题研究的基本方法、技术路线的

可行性论证

1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素,并研究影响因素间的内在联系,确定其相互之间的重要度,探讨其量化和规范化的方法,将国外先进国家的研究成果与我国具体实际相结合,建立我国企业技术创新预测和评估的指标体系。

2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中,发现问题、分析问题,归纳和总结出具有共性的东西,探索技术创新预测与宏观因素与微观因素之间的内在关系。

3、采用先简单后复杂的研究方法。对基于bp神经网络的技术创新预测和评估模型的研究,先从某一行业出发,定义模型的基本输入因素,然后,逐步扩展,逐步增加模型的复杂度。

4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合,进行实证研究,在实践中丰富和完善,研究出具有科学性和实用性的成果。

六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

本人长期从事市场营销和技术创新方面的研究工作,编写出版了《现代市场营销学》和《现代企业管理学》等有关著作,发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文,对企业技术创新的预测和评估有一定的理论基础,也从事过企业产品技术创新方面的策划和研究工作,具有一定的实践经验,与许多企业有密切的合作关系,同时,对神经网络技术也进行过专门的学习和研究,所以,本项目研究的理论基础、技术基础及实验场所已基本具备,能顺利完成本课题的研究,取得预期的研究成果。

七、论文研究的进展计划

2003.07-2003.09:完成论文开题。

2003.09-2003.11:影响企业技术创新发展的指标体系研究及其量化和规范化。

2003.11-2004.01:基于bp神经网络的技术创新预测和评估模型的构建。

2004.01-2004.03:基于bp神经网络的技术创新预测和评估模型计算方法研究。

2004.03-2004.04:基于bp神经网络的技术创新预测和评估模型体系的实证研究。

2004.04-2004.06:完成论文写作、修改定稿,准备答辩。

[01]傅家骥、仝允桓等.技术创新学.北京:清华大学出版社1998

[02]吴贵生.技术创新管理.北京:清华大学出版社2000

[03]柳卸林.企业技术创新管理.北京:科学技术出版社1997

[04]赵志、陈邦设等.产品创新过程管理模式的基本问题研究.管理科学学报.2000/2.

[05]王亚民、朱荣林.风险投资项目ecv评估指标与决策模型研究.风险投资.2002/6

[06]赵中奇、王浣尘、潘德惠.随机控制的极大值原理及其在投资决策中的应用.控制与决策.2002/6

[07]夏清泉、凌婕.风险投资理论和政策研究.国际商务研究.2002/5

[08]陈劲、龚焱等.技术创新信息源新探.中国软科学.2001/1.pp86-88

[09]严太华、张龙.风险投资评估决策方法初探.经济问题.2002/1

[10]苏永江、李湛.风险投资决策问题的系统分析.学术研究.2001/4

<11>孙冰.企业产品开发的评价模型及方法研究.中国管理科学.2002/4

[12]诸克军、杨久西、匡益军.基于人工神经网络的石油勘探有利性综合评价.系统工程理论与实践.2002/4

[13]杨力.基干bp神经网络的城市房屋租赁估价系统设计.中国管理科学.2002/4

[14]杨国栋、贾成前.高速公路复垦土地适宜性评价的bp神经网络模型.统工程理论与实践.2002/4

[15]楼文高.基于人工神经网络的三江平原土壤质量综合评价与预测模型.中国管理科学.2002/1

[16]胥悦红、顾培亮.基于bp神经网络的产品成本预测.管理工程学报.2000/4

[17]陈新辉、乔忠.基于tsa-bp神经网络的企业产品市场占有率预测模型.中国农业大学学报.2000/5

[18]刘育新.技术预测的过程与常用方法.中国软科学.1998/3

[19]温小霓、赵玮.市场需求与统计预测.西安电子科技大学学报.2000/5

[20]朱振中.模糊理论在新产品开发中的应用.科学管理研究.2000/6

[21]kimb.clark&takahirofuj

imoto.productdevelopmentperformance–strategy、organizationandmanagementinindustry.harvardbusinessschoolpress.boson1993

[22]gobelidh,browndj.improvingtheprocessofproductinnovation.research,technologymanagement,1993.36(2):46-49

[23]simonj.towner.fourwaystoacceleratenewproductdevelopment.longrangplanning1994.27(2):57-65

[24]abdulali,etal.productinnovationandentrystrategy.journalofproductinnovationmanagement1995.12(12):54-69

[25]ericvinhippel.thesourcesofinnovation.oxforduniversitypress.1988

[26]shtuba,zimermany.aneural-network-basedapproachforestimatingthecostofassembly.internationaljournalofproductioneconomics,1993.32:189-207

[27]wee-liangtan,dattarreyag.allampalli,investmentcriteriaofsingaporecapitalists,1997internationalcouncilforsmallbusiness,sanfrancisco,california,june1997

[28]michaelhenos,theroadtoventurefinancing:guidelinesforentrepreneuts,r&dstraregistmagazine,summer1991

[29]chowgc,thelargrangemethodofoptimizationwithapplicationstoportfoliandinvestmentdecisions.jofeconomicdymamicsandcontrol1996

篇6

论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究

课题来源:单位自拟课题或省政府下达的研究课题

选题依据:技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估, 可以使企业对未来的技术发展水平及其变化趋势有正确的把握, 从而为企业的技术创新决策提供科学的依据, 以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下, 企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中, 企业的技术创新决定着企业生存和发展、前途与命运, 为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

二、本课题国内外研究现状及发展趋势

现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

(1) 趋势外推法。指利用过去和现在的技术、经济信息, 分析技术发展趋势和规律, 在分析判断这些趋势和规律将继续的前提下, 将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家Raymond Pearl提出的Pearl曲线(数学模型为: Y=L?[1+A?exp(-Bt)] )及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为: Y=Lexp(-Bt))皆属于生长曲线, 其预测值Y为技术性能指标, t为时间自变量, L、A、B皆为常数。Ridenour模型也属于生长曲线预测法, 但它假定新技术的成长速度与熟悉该项技术的人数成正比, 主要适用于新技术、新产品的扩散预测。

(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息, 建立预测对象与影响因素的因果关系模型, 预测技术的发展变化。相关分析法认为, 一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的, 这样, 通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种: 导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

(3)专家预测法。以专家意见作为信息来源, 通过系统的调查、征询专家的意见, 分析和整理出预测结果。专家预测法主要有: 专家个人判断法、专家会议法、头脑风暴法及德尔菲法等, 其中, 德尔菲法吸收了前几种专家预测法的长处, 避免了其缺点, 被认为是技术预测中最有效的专家预测法。

趋势外推法的预测数据只能为纵向数据, 在进行产品技术创新预测时, 只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势, 并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中, 对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推, 而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测, 但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式, 而所得到的回归预测模型往往只能考虑少数几种主要影响因素, 略去了许多未考虑的因素, 所以, 所建模型对实际问题的表达能力也不够准确, 预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验, 往往带有主观性, 难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献, 为企业技术创新的预测提供了科学的方法论, 但在新的经济和市场环境下, 技术创新预测的方法和技术应有新的丰富和发展, 以克服自身的不足, 更进一步适应时展的需要, 为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

目前,在我国企业技术创新评估中, 一般只考虑如下四个方面的因素: (1) 技术的先进性、可行性、连续性; (2) 经济效果; (3) 社会效果; (4) 风险性, 在对此四方面内容逐个分析后, 再作综合评估。在综合评估中所用的方法主要有: Delphi法(专家法)、AHP法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等, 但技术创新的评估是一个非常复杂的系统, 其中存在着广泛的非线性、时变性和不确定性, 同时, 还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法, 难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究, 在我国的历史还不长, 无论是指标体系还是评估方法, 均处于研究之中, 我们认为目前在企业技术创新评估方面应做的工作是: (1) 建立一套符合我国实际情况的技术创新评估指标体系; (2) 建立一种适应于多因素、非线性和不确定性的综合评估方法。

这种情况下, 神经网络技术就有其特有的优势, 以其并行分布、自组织、自适应、自学习和容错性等优良性能, 可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题, 它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础, BP神经网络由输入层、隐含层和输出层构成, 各层的神经元数目不同, 由正向传播和反向传播组成, 在进行产品技术创新预测和评估时, 从输入层输入影响产品技术创新预测值和评估值的n个因素信息, 经隐含层处理后传入输出层, 其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置, 考虑了概括性和动态性, 力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素, 尽管是黑匣子式的预测和评估, 但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合, 输出一个经非线性变换后较为精确的预测值和评估值。

据文献查阅, 虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等, 但尚未发现将神经网络应用于技术创新预测与评估方面的研究, 在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下, 以神经网络为基础来建立产品技术创新预测与评估模型, 是对技术创新定量预测和评估方法的有益补充和完善。

三、论文预期成果的理论意义和应用价值

本项目研究的理论意义表现在: (1) 探索新的技术创新预测和评估技术, 丰富和完善技术创新预测和评估方法体系; (2) 将神经网络技术引入技术创新的预测和评估, 有利于推动技术创新预测和评估方法的发展。

本项目研究的应用价值体现在: (1) 提供一种基于多因素的技术创新定量预测技术, 有利于提高预测的正确性; (2)提供一种基于BP神经网络的综合评估方法, 有利于提高评估的科学性; (3) 为企业的技术创新预测和评估工作提供新的方法论和实用技术。

四、课题研究的主要内容

研究目标:

以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型, 并建立科学的预测和评估指标体系及设计相应的模型计算方法, 结合企业的具体实际, 对指标和模型体系进行实证分析, 使研究具有一定的理论水平和实用价值。

研究内容:

1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手, 密切结合电子商务和知识经济对企业技术创新的影响, 系统综合地分析影响产品技术创新的各相关因素, 建立科学的企业技术创新预测和评估指标体系, 并研究其量化和规范化的原则及方法。

2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时, 需要一组决定其相对重要性的初始权重, 权重的确定需要基本的原则作支持。

3、基于BP神经网络的技术创新预测和评估模型研究。 根据技术创新预测的特点, 以BP神经网络为基础, 构建基于多因素的技术创新预测和评估模型。

4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点, 设计其相应的计算方法。

5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料, 构建基于BP神经网络的技术创新预测和评估模型的学习样本, 对预测和评估模型进行自学习和训练, 使模型适合实际情况。

6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景, 对基于BP神经网络的技术创新预测和评估技术进行实证研究。

创新点:

1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面, 一种是采用传统的指标体系, 另一种是采用国外先进国家的指标体系, 如何结合我国实际当前经济形势, 参考国外先进发达国家的研究工作, 建立一套适合于我国企业技术创新预测和评估指标体系, 此为本研究要做的首要工作, 这是一项创新。

2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能, 能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题, 本项目首次将神经网络技术引入企业的技术创新预测和评估, 这也是一项创新。

五、课题研究的基本方法、技术路线的可行性论证

1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素, 并研究影响因素间的内在联系, 确定其相互之间的重要度, 探讨其量化和规范化的方法, 将国外先进国家的研究成果与我国具体实际相结合, 建立我国企业技术创新预测和评估的指标体系。

2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中, 发现问题、分析问题, 归纳和总结出具有共性的东西, 探索技术创新预测与宏观因素与微观因素之间的内在关系。

3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究, 先从某一行业出发, 定义模型的基本输入因素, 然后, 逐步扩展, 逐步增加模型的复杂度。

4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合, 进行实证研究, 在实践中丰富和完善, 研究出具有科学性和实用性的成果。

六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

本人长期从事市场营销和技术创新方面的研究工作, 编写出版了《现代市场营销学》和《现代企业管理学》等有关著作, 发表了企业技术创新与营销管理创新、企业技术创新与营销组织创新及企业技术创新与营销观念创新等与技术创新相关的学术研究论文, 对企业技术创新的预测和评估有一定的理论基础, 也从事过企业产品技术创新方面的策划和研究工作, 具有一定的实践经验, 与许多企业有密切的合作关系, 同时, 对神经网络技术也进行过专门的学习和研究, 所以, 本项目研究的理论基础、技术基础及实验场所已基本具备, 能顺利完成本课题的研究, 取得预期的研究成果。

七、论文研究的进展计划

2003.07-2003.09:完成论文开题。

2003.09-2003.11:影响企业技术创新发展的指标体系研究及其量化和规范化。

2003.11-2004.01:基于BP神经网络的技术创新预测和评估模型的构建。

2004.01-2004.03:基于BP神经网络的技术创新预测和评估模型计算方法研究。

2004.03-2004.04:基于BP神经网络的技术创新预测和评估模型体系的实证研究。

2004.04-2004.06:完成论文写作、修改定稿,准备答辩。

主要参考文献:

[01] 傅家骥、仝允桓等。 技术创新学。 北京: 清华大学出版社 1998

[02] 吴贵生。 技术创新管理。 北京: 清华大学出版社 2000

[03] 柳卸林。 企业技术创新管理。 北京: 科学技术出版社 1997

[04] 赵志、陈邦设等。 产品创新过程管理模式的基本问题研究。 管理科学学报。 2000/2.

[05] 王亚民、朱荣林。 风险投资项目ECV评估指标与决策模型研究。 风险投资。 2002/6

[06] 赵中奇、王浣尘、潘德惠。 随机控制的极大值原理及其在投资决策中的应用。 控制与决策。 2002/6

[07] 夏清泉、凌婕。 风险投资理论和政策研究。 国际商务研究。 2002/5

[08] 陈劲、龚焱等。 技术创新信息源新探。 中国软科学。 2001/1. pp86-88

[09] 严太华、张龙。 风险投资评估决策方法初探。 经济问题。 2002/1

[10] 苏永江、李湛。 风险投资决策问题的系统分析。 学术研究。 2001/4

[11] 孙冰。 企业产品开发的评价模型及方法研究。 中国管理科学。 2002/4

[12] 诸克军、杨久西、匡益军。 基于人工神经网络的石油勘探有利性综合评价。 系统工程理论与实践。 2002/4

[13] 杨力。 基干BP 神经网络的城市房屋租赁估价系统设计。 中国管理科学。 2002/4

[14] 杨国栋、贾成前。 高速公路复垦土地适宜性评价的BP神经网络模型。 统工程理论与实践。 2002/4

[15] 楼文高。 基于人工神经网络的三江平原土壤质量综合评价与预测模型。 中国管理科学。 2002/1

[16] 胥悦红、顾培亮。 基于BP神经网络的产品成本预测。 管理工程学报。 2000/4

[17] 陈新辉、乔忠。 基于TSA-BP神经网络的企业产品市场占有率预测模型。 中国农业大学学报。 2000/5

[18] 刘育新。 技术预测的过程与常用方法。 中国软科学。 1998/3

[19] 温小霓、赵玮。 市场需求与统计预测。 西安电子科技大学学报。 2000/5

[20] 朱振中。 模糊理论在新产品开发中的应用。 科学管理研究。 2000/6

[21]Kim B. Clark Takahiro Fujimoto. Product Development Performance Strategy、Organization and Management in Industry. Harvard Business School Press. Boson 1993

[22] Gobeli D H, Brown D J. Improving the process of product innovation. Research, Technology Management, 1993. 36(2):46-49

[23]Simon J.Towner. Four ways to accelerate new product development. Long Rang Planning 1994. 27(2):57-65

[24]Abdul Ali,et al. Product innovation and entry strategy. Journal of Product Innovation Management 1995. 12(12):54-69

[25]Eric Vin Hippel. The sources of Innovation. Oxford University Press. 1988

[26] Shtub A, Zimerman Y. A neural-network-based approach for estimating the cost of assembly. International Journal of Production Economics, 1993. 32: 189-207

[27] Wee-Liang Tan, Dattarreya G. Allampalli, Investment Criteria of Singapore Capitalists, 1997 International Council for Small Business, San Francisco, California, June 1997

[28]Michael Henos, The Road to Venture Financing: Guidelines for Entrepreneuts, RD Straregist Magazine,Summer 1991

[29]Chow GC, The Largrange Method of optimization with applications to portfoli and investment decisions. J of Economic Dymamics and Control 1996

[30]Jensen, R Information Cost and Innovation Adoption Policies, Management Science. Vol.34, No.2, Feb, 1988

篇7

论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究

课题来源:单位自拟课题或省政府下达的研究课题

选题依据:

技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

二、本课题国内外研究现状及发展趋势

现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

(1)趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家RaymondPearl提出的Pearl曲线(数学模型为:Y=L∕[1+A?exp(-Bt)])及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为:Y=Lexp(-Bt))皆属于生长曲线,其预测值Y为技术性能指标,t为时间自变量,L、A、B皆为常数。Ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。

(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

(3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。

趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推,而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测,但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式,而所得到的回归预测模型往往只能考虑少数几种主要影响因素,略去了许多未考虑的因素,所以,所建模型对实际问题的表达能力也不够准确,预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验,往往带有主观性,难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献,为企业技术创新的预测提供了科学的方法论,但在新的经济和市场环境下,技术创新预测的方法和技术应有新的丰富和发展,以克服自身的不足,更进一步适应时展的需要,为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

目前,在我国企业技术创新评估中,一般只考虑如下四个方面的因素:(1)技术的先进性、可行性、连续性;(2)经济效果;(3)社会效果;(4)风险性,在对此四方面内容逐个分析后,再作综合评估。在综合评估中所用的方法主要有:Delphi法(专家法)、AHP法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等,但技术创新的评估是一个非常复杂的系统,其中存在着广泛的非线性、时变性和不确定性,同时,还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法,难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究,在我国的历史还不长,无论是指标体系还是评估方法,均处于研究之中,我们认为目前在企业技术创新评估方面应做的工作是:(1)建立一套符合我国实际情况的技术创新评估指标体系;(2)建立一种适应于多因素、非线性和不确定性的综合评估方法。

这种情况下,神经网络技术就有其特有的优势,以其并行分布、自组织、自适应、自学习和容错性等优良性能,可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题,它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础,BP神经网络由输入层、隐含层和输出层构成,各层的神经元数目不同,由正向传播和反向传播组成,在进行产品技术创新预测和评估时,从输入层输入影响产品技术创新预测值和评估值的n个因素信息,经隐含层处理后传入输出层,其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置,考虑了概括性和动态性,力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素,尽管是黑匣子式的预测和评估,但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合,输出一个经非线性变换后较为精确的预测值和评估值。

据文献查阅,虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等,但尚未发现将神经网络应用于技术创新预测与评估方面的研究,在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,以神经网络为基础来建立产品技术创新预测与评估模型,是对技术创新定量预测和评估方法的有益补充和完善。

三、论文预期成果的理论意义和应用价值

本项目研究的理论意义表现在:(1)探索新的技术创新预测和评估技术,丰富和完善技术创新预测和评估方法体系;(2)将神经网络技术引入技术创新的预测和评估,有利于推动技术创新预测和评估方法的发展。

本项目研究的应用价值体现在:(1)提供一种基于多因素的技术创新定量预测技术,有利于提高预测的正确性;(2)提供一种基于BP神经网络的综合评估方法,有利于提高评估的科学性;(3)为企业的技术创新预测和评估工作提供新的方法论和实用技术。

四、课题研究的主要内容

研究目标:

以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型,并建立科学的预测和评估指标体系及设计相应的模型计算方法,结合企业的具体实际,对指标和模型体系进行实证分析,使研究具有一定的理论水平和实用价值。

研究内容:

1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手,密切结合电子商务和知识经济对企业技术创新的影响,系统综合地分析影响产品技术创新的各相关因素,建立科学的企业技术创新预测和评估指标体系,并研究其量化和规范化的原则及方法。

2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时,需要一组决定其相对重要性的初始权重,权重的确定需要基本的原则作支持。

3、基于BP神经网络的技术创新预测和评估模型研究。根据技术创新预测的特点,以BP神经网络为基础,构建基于多因素的技术创新预测和评估模型。

4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点,设计其相应的计算方法。

5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料,构建基于BP神经网络的技术创新预测和评估模型的学习样本,对预测和评估模型进行自学习和训练,使模型适合实际情况。

6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景,对基于BP神经网络的技术创新预测和评估技术进行实证研究。

创新点:

1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面,一种是采用传统的指标体系,另一种是采用国外先进国家的指标体系,如何结合我国实际当前经济形势,参考国外先进发达国家的研究工作,建立一套适合于我国企业技术创新预测和评估指标体系,此为本研究要做的首要工作,这是一项创新。

2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能,能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题,本项目首次将神经网络技术引入企业的技术创新预测和评估,这也是一项创新。

五、课题研究的基本方法、技术路线的可行性论证

1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素,并研究影响因素间的内在联系,确定其相互之间的重要度,探讨其量化和规范化的方法,将国外先进国家的研究成果与我国具体实际相结合,建立我国企业技术创新预测和评估的指标体系。

2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中,发现问题、分析问题,归纳和总结出具有共性的东西,探索技术创新预测与宏观因素与微观因素之间的内在关系。

3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究,先从某一行业出发,定义模型的基本输入因素,然后,逐步扩展,逐步增加模型的复杂度。

4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合,进行实证研究,在实践中丰富和完善,研究出具有科学性和实用性的成果。

六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

本人长期从事市场营销和技术创新方面的研究工作,编写出版了《现代市场营销学》和《现代企业管理学》等有关著作,发表了企业技术创新与营销管理创新、企业技术创新与营销组织创新及企业技术创新与营销观念创新等与技术创新相关的学术研究论文,对企业技术创新的预测和评估有一定的理论基础,也从事过企业产品技术创新方面的策划和研究工作,具有一定的实践经验,与许多企业有密切的合作关系,同时,对神经网络技术也进行过专门的学习和研究,所以,本项目研究的理论基础、技术基础及实验场所已基本具备,能顺利完成本课题的研究,取得预期的研究成果。

七、论文研究的进展计划

2003、07-2003、09:完成论文开题。

2003、09-2003、11:影响企业技术创新发展的指标体系研究及其量化和规范化。

2003、11-2004、01:基于BP神经网络的技术创新预测和评估模型的构建。

2004、01-2004、03:基于BP神经网络的技术创新预测和评估模型计算方法研究。

2004、03-2004、04:基于BP神经网络的技术创新预测和评估模型体系的实证研究。

2004、04-2004、06:完成论文写作、修改定稿,准备答辩。

主要参考文献:

[01]傅家骥、仝允桓等。技术创新学。北京:清华大学出版社1998

[02]吴贵生。技术创新管理。北京:清华大学出版社2000

[03]柳卸林。企业技术创新管理。北京:科学技术出版社1997

[04]赵志、陈邦设等。产品创新过程管理模式的基本问题研究。管理科学学报。2000/2、

[05]王亚民、朱荣林。风险投资项目ECV评估指标与决策模型研究。风险投资。2002/6

[06]赵中奇、王浣尘、潘德惠。随机控制的极大值原理及其在投资决策中的应用。控制与决策。2002/6

[07]夏清泉、凌婕。风险投资理论和政策研究。国际商务研究。2002/5

[08]陈劲、龚焱等。技术创新信息源新探。中国软科学。2001/1、pp86-88

[09]严太华、张龙。风险投资评估决策方法初探。经济问题。2002/1

[10]苏永江、李湛。风险投资决策问题的系统分析。学术研究。2001/4

篇8

课题来源:单位自拟课题或省政府下达的研究课题

选题依据:

技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

二、本课题国内外研究现状及发展趋势

现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

(1)趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家raymondpearl提出的pearl曲线(数学模型为:y=l∕[1+a?exp(-b·t)])及英国数学家和统计学家gompertz提出的gompertz曲线(数学模型为:y=l·exp(-b·t))皆属于生长曲线,其预测值y为技术性能指标,t为时间自变量,l、a、b皆为常数。ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。

(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

(3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。

趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推,而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测,但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式,而所得到的回归预测模型往往只能考虑少数几种主要影响因素,略去了许多未考虑的因素,所以,所建模型对实际问题的表达能力也不够准确,预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验,往往带有主观性,难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献,为企业技术创新的预测提供了科学的方法论,但在新的经济和市场环境下,技术创新预测的方法和技术应有新的丰富和发展,以克服自身的不足,更进一步适应时展的需要,为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

目前,在我国企业技术创新评估中,一般只考虑如下四个方面的因素:(1)技术的先进性、可行性、连续性;(2)经济效果;(3)社会效果;(4)风险性,在对此四方面内容逐个分析后,再作综合评估。在综合评估中所用的方法主要有:delphi法(专家法)、ahp法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等,但技术创新的评估是一个非常复杂的系统,其中存在着广泛的非线性、时变性和不确定性,同时,还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法,难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究,在我国的历史还不长,无论是指标体系还是评估方法,均处于研究之中,我们认为目前在企业技术创新评估方面应做的工作是:(1)建立一套符合我国实际情况的技术创新评估指标体系;(2)建立一种适应于多因素、非线性和不确定性的综合评估方法。

这种情况下,神经网络技术就有其特有的优势,以其并行分布、自组织、自适应、自学习和容错性等优良性能,可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题,它能克服上述各方法的不足。本项目以bp神经网络作为基于多因素的技术创新预测和评估模型构建的基础,bp神经网络由输入层、隐含层和输出层构成,各层的神经元数目不同,由正向传播和反向传播组成,在进行产品技术创新预测和评估时,从输入层输入影响产品技术创新预测值和评估值的n个因素信息,经隐含层处理后传入输出层,其输出值y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置,考虑了概括性和动态性,力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素,尽管是黑匣子式的预测和评估,但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合,输出一个经非线性变换后较为精确的预测值和评估值。

据文献查阅,虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等,但尚未发现将神经网络应用于技术创新预测与评估方面的研究,在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,以神经网络为基础来建立产品技术创新预测与评估模型,是对技术创新定量预测和评估方法的有益补充和完善。

三、论文预期成果的理论意义和应用价值

本项目研究的理论意义表现在:(1)探索新的技术创新预测和评估技术,丰富和完善技术创新预测和评估方法体系;(2)将神经网络技术引入技术创新的预测和评估,有利于推动技术创新预测和评估方法的发展。

本项目研究的应用价值体现在:(1)提供一种基于多因素的技术创新定量预测技术,有利于提高预测的正确性;(2)提供一种基于bp神经网络的综合评估方法,有利于提高评估的科学性;(3)为企业的技术创新预测和评估工作提供新的方法论和实用技术。

四、课题研究的主要内容

研究目标:

以bp神经网络模型为基础研究基于多因素的技术创新预测和评估模型,并建立科学的预测和评估指标体系及设计相应的模型计算方法,结合企业的具体实际,对指标和模型体系进行实证分析,使研究具有一定的理论水平和实用价值。

研究内容:

1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手,密切结合电子商务和知识经济对企业技术创新的影响,系统综合地分析影响产品技术创新的各相关因素,建立科学的企业技术创新预测和评估指标体系,并研究其量化和规范化的原则及方法。

2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时,需要一组决定其相对重要性的初始权重,权重的确定需要基本的原则作支持。

3、基于bp神经网络的技术创新预测和评估模型研究。根据技术创新预测的特点,以bp神经网络为基础,构建基于多因素的技术创新预测和评估模型。

4、基于bp神经网络的技术创新预测和评估模型计算方法设计。根据基于bp神经网络的技术创新预测和评估模型的基本特点,设计其相应的计算方法。

5、基于bp神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料,构建基于bp神经网络的技术创新预测和评估模型的学习样本,对预测和评估模型进行自学习和训练,使模型适合实际情况。

6、基于bp神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景,对基于bp神经网络的技术创新预测和评估技术进行实证研究。

创新点:

1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面,一种是采用传统的指标体系,另一种是采用国外先进国家的指标体系,如何结合我国实际当前经济形势,参考国外先进发达国家的研究工作,建立一套适合于我国企业技术创新预测和评估指标体系,此为本研究要做的首要工作,这是一项创新。

2、研究基于bp神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能,能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题,本项目首次将神经网络技术引入企业的技术创新预测和评估,这也是一项创新。

五、课题研究的基本方法、技术路线的可行性论证

1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素,并研究影响因素间的内在联系,确定其相互之间的重要度,探讨其量化和规范化的方法,将国外先进国家的研究成果与我国具体实际相结合,建立我国企业技术创新预测和评估的指标体系。

2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中,发现问题、分析问题,归纳和总结出具有共性的东西,探索技术创新预测与宏观因素与微观因素之间的内在关系。

3、采用先简单后复杂的研究方法。对基于bp神经网络的技术创新预测和评估模型的研究,先从某一行业出发,定义模型的基本输入因素,然后,逐步扩展,逐步增加模型的复杂度。

4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合,进行实证研究,在实践中丰富和完善,研究出具有科学性和实用性的成果。

六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

本人长期从事市场营销和技术创新方面的研究工作,编写出版了《现代市场营销学》和《现代企业管理学》等有关著作,发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文,对企业技术创新的预测和评估有一定的理论基础,也从事过企业产品技术创新方面的策划和研究工作,具有一定的实践经验,与许多企业有密切的合作关系,同时,对神经网络技术也进行过专门的学习和研究,所以,本项目研究的理论基础、技术基础及实验场所已基本具备,能顺利完成本课题的研究,取得预期的研究成果。

七、论文研究的进展计划

07-.09:完成论文开题。

09-.11:影响企业技术创新发展的指标体系研究及其量化和规范化。

11-.01:基于bp神经网络的技术创新预测和评估模型的构建。

01-.03:基于bp神经网络的技术创新预测和评估模型计算方法研究。

03-.04:基于bp神经网络的技术创新预测和评估模型体系的实证研究。

04-.06:完成论文写作、修改定稿,准备答辩。

主要参考文献:

[01]傅家骥、仝允桓等.技术创新学.北京:清华大学出版社1998

[02]吴贵生.技术创新管理.北京:清华大学出版社

[03]柳卸林.企业技术创新管理.北京:科学技术出版社1997

[04]赵志、陈邦设等.产品创新过程管理模式的基本问题研究.管理科学学报./2.

[05]王亚民、朱荣林.风险投资项目ecv评估指标与决策模型研究.风险投资./6

[06]赵中奇、王浣尘、潘德惠.随机控制的极大值原理及其在投资决策中的应用.控制与决策./6

[07]夏清泉、凌婕.风险投资理论和政策研究.国际商务研究./5

[08]陈劲、龚焱等.技术创新信息源新探.中国软科学./1.pp86-88

[09]严太华、张龙.风险投资评估决策方法初探.经济问题./1

[10]苏永江、李湛.风险投资决策问题的系统分析.学术研究./4

篇9

一、论文开题报告的意义

硕士论文开题报告是研究生在完成文献调研后写成的关于学位论文选题与如何实施的论述性报告。论文开题报告既是文献调研的聚焦点,又是学位论文研究工作展开的散射点,对研究工作起到定位作用。

写论文开题报告的目的,是要请老师及专家们帮忙判断一下所研究的选题有没有价值,研究方法是否奏效,论证逻辑有没有明显缺陷。因此论文开题报告就要围绕研究的主要内容,拟解决的主要问题(或阐述的主要观点),研究步骤、方法及措施为主要内容。但笔者在工作实践中发现有很多学生往往在论文开题报告中花费大量笔墨叙述别人的研究成果,谈到自己的研究方法时,往往寥寥数语一笔带过。这样,不便于评审老师指导。

二、如何写论文开题报告

(一)论文开题报告的前提通过理论思维选择课题

在工作实践中,发现硕士研究生论文开题报告中存在的普遍问题是选题不合适。有的提出的问题太过平庸,有的选题范围太大,研究内容太多、太宽泛,提出的问题不切合硕士生的实际,实践操作起来难度较大。如有的学生提出的论文题目:新型中性镍催化剂的研究及其催化合成聚乙烯、聚丙烯的研究,此选题有意义,有创新,作者的研究思路也比较正确,但论文选题范围太大,研究内容对于一个硕士生来说明显偏多,无法按时完成。因此应重新确定研究内容,注重项目的可操作性。

那么如何选择研究问题呢?这里要强调的是通过理论思维来发现研究问题。

理论是由一系列前设和术语构造的逻辑体系,特定领域的理论有其特定的概念、范畴和研究范式,只有在相同的概念、视角和范式下,理论才能够对话。只有通过对话,理论才能够发展。硕博论文要想创造新理论很难,多数是在既有理论的基础上加以发展。

其次,选择问题是一个剥皮的过程,理论问题总是深深地隐藏在复杂的现实背后,而发现理论问题,则需要运用理论思维的能力。这就需要我们不断锻炼和提高自己的理论思维能力,需要在日常的学习中,不断总结和分析以往的研究者大体是从哪些视角来分析和研究问题,运用了哪些理论工具和方法,通过学习和总结来不断提高自己的理论思维能力,从而选择具有学术理论价值和应用价值,并与国家经济建设及导师承担的科学研究项目紧密结合的研究问题。

(二)做好文献综述,为论文开题报告打好基础

在研究生论文开题报告会上,出现的普遍问题是对文献的研读不够,对研究背景的了解不够深入,对研究方向上国内外的具体进展情况了解不够全面、详细,资料引用的针对性、可比性不强。有很多学生没有完全搞清论文开题报告与文献综述的区别,他们的论文开题报告有很多仅仅是对前人工作的叙述,而对自己的工作介绍甚少。

文献综述的基本内容包括:国内外现状;研究方向;进展情况;存在问题;参考依据。这是对学术观点和理论方法的整理。同时,文献综述还是评论性的,因此要带着作者本人批判的眼光来归纳和评论文献,而不仅仅是相关领域学术研究的堆砌。

要想写好论文开题报告,必须认真研读文献,对所研究的课题有个初步的了解,知道别人都做了哪些工作,哪些方面可以作为自己研究的切入点,因此,文献调研的深入和全面程度,会相当程度地影响论文开题报告的质量,是学生充分发挥主观能动性的客观基础。

(三)论文开题报告的格式及写作技巧

1.论文开题报告格式

一个清晰的选题,往往已经隐含着论文的基本结论。对现有文献的缺点的评论,也基本暗含着改进的方向。论文开题报告就是要把这些暗含的结论、论证结论的逻辑推理,清楚地展现出来。论文开题报告的写作步骤:课题选择课题综述论题选择论文开题报告。论文开题报告的基本内容主要包括:选题的意义;研究的主要内容;拟解决的主要问题(阐述的主要观点);研究(工作)步骤、方法及措施;毕业论文(设计)提纲;主要参考文献。为了写好论文开题报告,江苏工业学院研究生部专门出台了详细的规定,规定论文开题报告的一般内容包括:

(1)论文开题报告课题来源、开题依据和背景情况,课题研究目的以及理论意义和实际应用价值。

(2)论文开题报告文献综述。在阅读规定文献量(不少于50篇,其中外文文献占40%以上)的基础上,着重阐述该研究课题国内外的研究现状及发展动态,同时介绍查阅文献的范围以及查阅方式、手段。

(3)论文开题报告主要研究内容。包括学术构思、研究方法、关键技术、技术路线、实施方案、可行性分析、研究中可能遇到的难点、解决的方法和措施以及预期目标。

(4)论文开题报告拟采用的实验手段,所需科研和实验条件,估计课题工作量和所需经费,研究工作进度计划。

(5)论文开题报告主要参考文献,列出至少10篇所查阅参考的文献。

2.论文开题报告的写作技巧

(1)提出问题注意层次

选题是撰写学术论文的第一步,选题是否妥当,直接关系到论文的质量,甚至关系到论文的成功与否。不同于政策研究报告,学术文章聚焦理论层面、解决理论问题。有的学生的选题不具有新颖性,内容没有创新,仅仅是对前人工作的总结,或是对前人工作的重复。在选题时要坚持先进性、科学性、实用性及可行性的原则。在提出问题时,要以内行看得懂的术语和明确的逻辑来表述。选题来源包括:1、与自己实际工作或科研工作相关的、较为熟悉的问题;2、自己从事的专业某问题发展迅速,需要综合评价;3、从掌握的大量文献中选择反映本学科的新理论、新技术或新动向的题目。

所选题目不宜过大,越具体越容易收集资料,从某一个侧面入手,容易深入。

(2)瞄准主流文献,随时整理

文献资料是撰写好学术论文的基础,文献越多,就越好写,选择文献时应选择本学科的核心期刊、经典著作等,要注意所选文献的代表性、可靠性及科学性;选择文献应先看近期的(近3~5年),后看远期的,广泛阅读资料,有必要时还应找到有关文献所引用的原文阅读,在阅读时,注意做好读书卡片或读书笔记。

整理资料时,要注意按照问题来组织文献资料,写文献综述时不是将看过的资料都罗列和陈述出来,而是要按照一定的思路将其提炼出来。只有这样,才能写出好的文献综述,也才能写出好的论文开题报告,进而为写出好的论文打下基础。

(3)研究目标具体而不死板

一般论文开题报告都要求明确学位论文的研究目标,但笔者认为,研究目标不宜规定得太死板,这是因为,即使条件一定,目标是偏高还是偏低,往往难于准确判断,研究工作本身,涉及求知因素,各个实验室条件不同,具体研究时条件也不同。学位论文选题和研究目标体现了研究工作的价值特征。

三、论文开题报告的质量保证

为了保证硕士研究生的培养质量,提高论文质量,就必须对论文开题报告进行评价。论文开题报告会由3~5位相关学科的专家对论文开题报告进行评议,与企业合作的重大科研项目可以聘请1~2位相应企业的具有高级职称的专家参加,不同学科的论文开题报告的侧重点不同。江苏工业学院研究生部规定学生必须进行论文开题报告,并规定了统一的格式,设计了专门的论文开题报告评审表,论文开题报告会上研究生应对课题进行详细汇报,并对专家提问做出必要的解释和说明。论文开题报告的成绩考核以合格、不合格记。评审小组成员最后签名并给出学生是否合格的评审意见,并以百分制打出具体的分数。论文开题报告成绩不合格者,不得进入课题研究。

为了提高论文质量,研究生必须首先从思想上重视论文开题报告,在平时的学习中注意积累,从各个方面提高能力,尤其要注意培养通过理论思维发现研究问题的能力。论文开题报告是研究工作的开始,良好的开端为优秀的学位论文奠定了坚实的基础。

2017年研究生论文开题报告范文 论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究

一、课题来源:单位自拟课题或省政府下达的研究课题

选题依据:技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估, 可以使企业对未来的技术发展水平及其变化趋势有正确的把握, 从而为企业的技术创新决策提供科学的依据, 以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下, 企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中, 企业的技术创新决定着企业生存和发展、前途与命运, 为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

二、本课题国内外研究现状及发展趋势

现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

(1) 趋势外推法。指利用过去和现在的技术、经济信息, 分析技术发展趋势和规律, 在分析判断这些趋势和规律将继续的前提下, 将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家Raymond Pearl提出的Pearl曲线(数学模型为: Y=L∕[1+A?exp(-Bt)] )及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为: Y=Lexp(-Bt))皆属于生长曲线, 其预测值Y为技术性能指标, t为时间自变量, L、A、B皆为常数。Ridenour模型也属于生长曲线预测法, 但它假定新技术的成长速度与熟悉该项技术的人数成正比, 主要适用于新技术、新产品的扩散预测。

(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息, 建立预测对象与影响因素的因果关系模型, 预测技术的发展变化。相关分析法认为, 一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的, 这样, 通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种: 导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

(3)专家预测法。以专家意见作为信息来源, 通过系统的调查、征询专家的意见, 分析和整理出预测结果。专家预测法主要有: 专家个人判断法、专家会议法、头脑风暴法及德尔菲法等, 其中, 德尔菲法吸收了前几种专家预测法的长处, 避免了其缺点, 被认为是技术预测中最有效的专家预测法。

趋势外推法的预测数据只能为纵向数据, 在进行产品技术创新预测时, 只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势, 并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中, 对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推, 而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测, 但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式, 而所得到的回归预测模型往往只能考虑少数几种主要影响因素, 略去了许多未考虑的因素, 所以, 所建模型对实际问题的表达能力也不够准确, 预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验, 往往带有主观性, 难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献, 为企业技术创新的预测提供了科学的方法论, 但在新的经济和市场环境下, 技术创新预测的方法和技术应有新的丰富和发展, 以克服自身的不足, 更进一步适应时展的需要, 为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

目前,在我国企业技术创新评估中, 一般只考虑如下四个方面的因素: (1) 技术的先进性、可行性、连续性; (2) 经济效果; (3) 社会效果; (4) 风险性, 在对此四方面内容逐个分析后, 再作综合评估。在综合评估中所用的方法主要有: Delphi法(专家法)、AHP法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等, 但技术创新的评估是一个非常复杂的系统, 其中存在着广泛的非线性、时变性和不确定性, 同时, 还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法, 难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究, 在我国的历史还不长, 无论是指标体系还是评估方法, 均处于研究之中, 我们认为目前在企业技术创新评估方面应做的工作是: (1) 建立一套符合我国实际情况的技术创新评估指标体系; (2) 建立一种适应于多因素、非线性和不确定性的综合评估方法。

这种情况下, 神经网络技术就有其特有的优势, 以其并行分布、自组织、自适应、自学习和容错性等优良性能, 可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题, 它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础, BP神经网络由输入层、隐含层和输出层构成, 各层的神经元数目不同, 由正向传播和反向传播组成, 在进行产品技术创新预测和评估时, 从输入层输入影响产品技术创新预测值和评估值的n个因素信息, 经隐含层处理后传入输出层, 其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置, 考虑了概括性和动态性, 力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素, 尽管是黑匣子式的预测和评估, 但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合, 输出一个经非线性变换后较为精确的预测值和评估值。

据文献查阅, 虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等, 但尚未发现将神经网络应用于技术创新预测与评估方面的研究, 在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下, 以神经网络为基础来建立产品技术创新预测与评估模型, 是对技术创新定量预测和评估方法的有益补充和完善。

三、论文预期成果的理论意义和应用价值

本项目研究的理论意义表现在: (1) 探索新的技术创新预测和评估技术, 丰富和完善技术创新预测和评估方法体系; (2) 将神经网络技术引入技术创新的预测和评估, 有利于推动技术创新预测和评估方法的发展。

本项目研究的应用价值体现在: (1) 提供一种基于多因素的技术创新定量预测技术, 有利于提高预测的正确性; (2)提供一种基于BP神经网络的综合评估方法, 有利于提高评估的科学性; (3) 为企业的技术创新预测和评估工作提供新的方法论和实用技术。

四、课题研究的主要内容

研究目标:

以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型, 并建立科学的预测和评估指标体系及设计相应的模型计算方法, 结合企业的具体实际, 对指标和模型体系进行实证分析, 使研究具有一定的理论水平和实用价值。

研究内容:

1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手, 密切结合电子商务和知识经济对企业技术创新的影响, 系统综合地分析影响产品技术创新的各相关因素, 建立科学的企业技术创新预测和评估指标体系, 并研究其量化和规范化的原则及方法。

2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时, 需要一组决定其相对重要性的初始权重, 权重的确定需要基本的原则作支持。

3、基于BP神经网络的技术创新预测和评估模型研究。 根据技术创新预测的特点, 以BP神经网络为基础, 构建基于多因素的技术创新预测和评估模型。

4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点, 设计其相应的计算方法。

5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料, 构建基于BP神经网络的技术创新预测和评估模型的学习样本, 对预测和评估模型进行自学习和训练, 使模型适合实际情况。

6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景, 对基于BP神经网络的技术创新预测和评估技术进行实证研究。

创新点:

1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面, 一种是采用传统的指标体系, 另一种是采用国外先进国家的指标体系, 如何结合我国实际当前经济形势, 参考国外先进发达国家的研究工作, 建立一套适合于我国企业技术创新预测和评估指标体系, 此为本研究要做的首要工作, 这是一项创新。

2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能, 能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题, 本项目首次将神经网络技术引入企业的技术创新预测和评估, 这也是一项创新。

五、课题研究的基本方法、技术路线的可行性论证

1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素, 并研究影响因素间的内在联系, 确定其相互之间的重要度, 探讨其量化和规范化的方法, 将国外先进国家的研究成果与我国具体实际相结合, 建立我国企业技术创新预测和评估的指标体系。

2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中, 发现问题、分析问题, 归纳和总结出具有共性的东西, 探索技术创新预测与宏观因素与微观因素之间的内在关系。

3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究, 先从某一行业出发, 定义模型的基本输入因素, 然后, 逐步扩展, 逐步增加模型的复杂度。

4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合, 进行实证研究, 在实践中丰富和完善, 研究出具有科学性和实用性的成果。

六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

本人长期从事市场营销和技术创新方面的研究工作, 编写出版了《现代市场营销学》和《现代企业管理学》等有关著作, 发表了企业技术创新与营销管理创新、企业技术创新与营销组织创新及企业技术创新与营销观念创新等与技术创新相关的学术研究论文, 对企业技术创新的预测和评估有一定的理论基础, 也从事过企业产品技术创新方面的策划和研究工作, 具有一定的实践经验, 与许多企业有密切的合作关系, 同时, 对神经网络技术也进行过专门的学习和研究, 所以, 本项目研究的理论基础、技术基础及实验场所已基本具备, 能顺利完成本课题的研究, 取得预期的研究成果。

七、论文研究的进展计划

2003.07-2003.09:完成论文开题。

2003.09-2003.11:影响企业技术创新发展的指标体系研究及其量化和规范化。

2003.11-2015.01:基于BP神经网络的技术创新预测和评估模型的构建。

2015.01-2015.03:基于BP神经网络的技术创新预测和评估模型计算方法研究。

2015.03-2015.04:基于BP神经网络的技术创新预测和评估模型体系的实证研究。

2015.04-2015.06:完成论文写作、修改定稿,准备答辩。

主要参考文献:

[01] 傅家骥、仝允桓等. 技术创新学. 北京: 清华大学出版社 1998

[02] 吴贵生. 技术创新管理. 北京: 清华大学出版社 2000

[03] 柳卸林. 企业技术创新管理. 北京: 科学技术出版社 1997

[04] 赵志、陈邦设等. 产品创新过程管理模式的基本问题研究. 管理科学学报. 2000/2.

[05] 王亚民、朱荣林. 风险投资项目ECV评估指标与决策模型研究. 风险投资. 2002/6

[06] 赵中奇、王浣尘、潘德惠. 随机控制的极大值原理及其在投资决策中的应用. 控制与决策. 2002/6

[07] 夏清泉、凌婕. 风险投资理论和政策研究. 国际商务研究. 2002/5

篇10

早在2008年教育部组织实施的高等院校本科教学质量评估中,专业实践教学环节就已被列入评估体系。但由于本次评估主要是对高校整体质量进行评价,具体专业的教学评价并未详细涉及。对行政管理这类文科专业,实践教学本身多年来并没有引起足够的重视,学生的实践环节多局限于就业前的实习。行政管理专业的实践环节不能如理工科一样有完善的实验室,即使有已经签约的实习基地,每个实践基地所能提供岗位的性质,如企业办公室、政府的街道办事处等级导致接纳的学生实习数量极其有限。客观条件的限制使得各个高校并未对文科实践教学产生足够的重视,所以实践教学评估更未进入领导者的决策议程。在学院层面,一方面,由于目前多数高校实行校院二级管理制度,学校对学院工作也由以前的专项、专业考核向整体考核演变,即学院总体完成学校分配的“清单式”任务即可。当管理的重心向下转移时,管理的目标也在发生变化。另一方面,普通高校对科研的重视日益赶超教学工作,由于不合理的学校排名指标导向、教师的晋升待遇都与科研论文项目等硬性指标挂钩,教学任务仅满足于完成即可,质量如何则难以得到衡量与控制。

(二)实践教学评估内容难以确定

由于行政管理专业本身的特性,实践教学的评价内容难以确定。行政管理专业特性从专业培养目标可窥:研究以政府为主的公共组织及其工作人员依法管理公共事务的理论和方法的应用性学科,其人才培养目标是培养具有较高政治理论素质,掌握现代行政管理学基本理论和专业知识,具有较强的管理、经营、策划、调研、交际能力,可以胜任国家机关、社会团体和企事业单位的一般行政管理工作或从事行政管理学方面教学研究工作的专业人才。该目标中所欲培养的能力很难通过评价手段予以评价。但这些能力却又是用人单位的重要考虑。这在课题组的调研中得以印证。根据课题组的调研,企业对学生的测评侧重于素质和能力两个方面企业在招聘时最看重的是学生的综合素质,以后依次排列的是思想道德素质、身体素质、专业素质、心理素质、文化素质。企业对行政管理专业学生素质重视程度的统计企业对行政管理专业人才使用过程中,更加侧重能力的发挥。用人单位最看重学生的人际协调能力,实践操作能力则次之。根据企业注重的能力与素质,单纯综合素质与人际协调这两项就与实践教学效果的关联无法得到充分论证。换句话说,实践教学活动的效果在学生就业后不能通过工作的形式与行为得以体现,所以实践教学追求培养学生应具备的能力素质目标本身难以测量。

(三)实践教学评价的标准与方法不明确与实践教学评价内容难以确定一样

评价的标准也是难以解决的问题。实践教学对学生产生的影响从时间维度来讲难以衡量。短期内,实践教学的效果难以实现,但长期效果的测量和追踪需花费大量的人力与时间成本,难以操作。实践教学产生的影响既有可能是直接的,也有可能是间接的。学生最终在工作中表现出的行为亦有可能是多种因素综合产生的结果。即使确定了实践教学质量的评价标准,也难以通过量化的方法评估。有的院校在开展行政管理专业实践教学评价时,仅仅是对理论教学评价模式的移植和照搬,使得实践教学评价指标与理论教学评价指标存在着很大的相似性。众所周知,理论教学是以专业理论知识的传授为主,评价往往侧重于课堂的教学能力;而实践教学则是以实践技能的传授为主,评价侧重于实践技能。两者在评价重点与方式上均有不同。

(四)实践教学评价的主体单一

当前行政管理专业实践教学评价大多采用学生反馈、专家检查、教师自评与互评等形式。科学合理的评价,应由多主体共同实施,然后把不同主体得出的评价结果汇总,再次进行整理分析,才能得出相对客观公正的结果。根据调研了解,行政管理专业实践教学的评价主体仅仅局限于教师。教师作为课程的组织者很难对自己的教学行为进行客观的评估,并且有夸大自身教学效果的倾向。即使有高校对行政管理专业进行专业评估,普遍采用的是内部评估的方式,即由学校组织校内专家进行检查。但这种检查评估象征性意义远大于实质意义。校内评估专家尽管具有搜集信息的优势却往往是非被评估专业的从事者,工科背景的专家评价文科专业的情况也不在少数;而且评估存在管理主义倾向,即评价者容易接受管理者的暗示而不能作为单独的主体独立发挥作用。

二、完善行政管理专业实践教学评估的策略

很多学者对当前专业评估已经做出了足够多的批判,现实中评估工作也让管理者、评估者与被评估者都极为抵触,尤其最为极端的质疑在于评估本身存在的合理性。抛开评估过程出现的不合理、不科学甚至造假的扭曲现象,课题组认为专业评估工作依然有存在的必要。因为只有通过评估,才能有改进,才能提升质量。行政管理专业实践教学评估本身存在的困难不应成为不作为的理由。一定意义上讲,难,才是彰显深入工作的必要。当然,行政管理专业实践教学评估应审慎进行,在对方法论、评估内容、操作方法等科学设计基础上再思考如何细化实施。

(一)革新评估的方法论与理念评估的方法论与理念是指导评估工作的指南

早在1897年,美国教育家瑞斯(Rice)就发表了《无效的拼写炼狱》一文,意在评价美国基础课程体系的成效。并由此开创了以“测量”为特征的评价时代,评估者的角色是技术性的,即通过对评价工具的选择完成评估工作。在1933年,美国教育领域的卡内基学分体系受到社会质疑时,拉尔夫•泰勒用八年的时间研究开创了以目标为导向的“描述性”第二代评估。实际运作过程中,目标模糊性提出了新挑战,因此,评估需要在了解事实的基础上发挥评估者的判断。基于多元价值诉求基础上的“判断”成为评估工作新时代的特征。从评估科学的发展历程来看,评估经历了从“测量”到“描述”到“判断”的转变,表明了评估的理念与方法论的变更。对于专业实践教学评价而言,通过考试(考核)方式的测量在各个高校被作为评价的主要工具。“描述性”评估以学生为评价客体,已经开始逐渐开展。行政管理专业通过教育实践培养具有沟通、协调、组织等能力的学生,但这类目标并不能用明确的标准予以衡量。这就意味着专业实践教学评估也应在遵循现有评价理念上继续突破,整合方法。因为,单纯的基于事实的判断也容易出现偏差“,评估专家往往成为自己‘客观’方法的囚犯,他们把观察局限于学生群体的外在行为,而忽视了学生内在的主观目的和价值观,评价者努力构建对学生行为的解释模型,但未能抓住价值观和行为之间的联系”。

(二)设置合理的实践教学评估内容与指标体系

高校专业评估指标体系的建立是衡量专业评估工作推进状态的标志,对评估的科学性、客观性具有重要意义。所以,设置合理的实践教学评价指标体系尤为重要。但如何设置、怎样设置一直成为学术界和管理所面临的难题。本文也不在于构建指标体系,只限于提出建设指标应该考虑的因素。著名社会学家艾尔•巴比认为:“评估研究的一个基本障碍就是要对‘不可测量的’效果进行测量。因此,评估研究作为一种方法,就是试图去发现某物存在或不存在、某现象发生或是不发生。为了进行评估研究,我们必须能够操作化、观察以及确认到底什么存在或是不存在。”基于此,本课题通过行政管理专业学生工作内容及所需的能力与素质设置实践教学的内容与框架,进而设置实践教学评估的内容与框架。根据调研,企业招聘的行政管理学生以本科生为主占43.8%,专科生占41.7%,硕士研究生占13.5%,博士研究生占1%。从事的职位及所占的比例分别是行政助理45%、行政秘书25%、行政文员20%、人力资源10%。这些职位主要是为其他类工作提供支持。根据归纳与分析,总结了行政助理(文员)类主要职能。这些工作都需要较强的综合素质、人际协调能力、实践操作能力。因此学生的综合素质、人际关系协调和实践操作能力,是在专业实践教学中应侧重培养的内容,同时也是教学评估应该评估的内容。

篇11

2008年发生了由美国次贷危机引发的全球性金融危机。紧随其后,2009年末,始于希腊的国家债务危机逐渐演变为整个欧元区的债务危机,进而发展成为制约并影响欧洲乃至全球经济复苏的一场“债务飓风”。在这些接二连三的世界性危机中,这些“大而不能倒”的系统性重要金融机构的表现直接影响着危机的发展。

一、含义

2008年,由美国引发的次贷危机席卷全球,各国都遭受了不同程度的损失,各大金融机构的表现也成了人们关注的焦点。在此背景下,全球金融界出现了一个崭新的词汇――系统重要性金融机构,但其实质却是金融界一直存在的一个问题,即“大而不能倒”问题。随之而来的欧债危机,更是引起了人们对系统重要性金融机构的热烈讨论。连续的国际性金融危机使得这个问题在横面与纵面都有了较大程度的加深。

根据国际货币基金组织、国际清算银行和金融稳定理事会的阐述,全球系统重要性金融银行被定义为,在全球范围内居于重要地位并承担了关键功能,其倒闭可能给金融体系造成损害并对实体经济产生严重负面影响的关键性银行。简而言之,全球系统重要性银行就是“大而不能倒”的银行。系统重要性金融机构主要由于其规模、复杂性、系统性关联等因素,如果无序倒闭,无论在整个金融体系还是实体经济运行都将带来显著性的破坏

2011年11月,G20首脑峰会正式公布了由金融稳定委员会(FSB)制定的《处理系统重要性金融机构的政策方法》。几乎同一时间,巴塞尔委员会(BCBS)也了《全球系统重要性银行:评估方法及附加资本要求》,并公布了首批29家全球系统重要性银行名单。巴塞尔委员会称其会对全球系统重要性金融机构加强监管,最大限度地降低金融危机风险,国际金融治理措施也将在随后的八年内逐步走向全面实施。

二、指标评估方法文献综述

由于系统重要性银行在全球范围的重要地位,银行系统重要性的评估显得尤为重要。国内外学者采用设置指标、运用金融网络模型、协同风险模型、尾部函数相关模型等评估银行的系统重要性。但是,由于受到多方面因素的影响,对于系统重要性金融机构评估标准和方法的研究,目前仍处于起步阶段。

指标评估法具有独特的评估优势,不仅可以对银行现行的系统重要性来源进行追踪,也可以对银行系统重要性的发展趋势进行预测,正确识别系统重要性银行,以实现对其的差别监管。因此,大多数国内外学者对其研究,将其不断优化。

2009年,金融稳定理事会颁布了“评估金融机构、市场和工具的系统重要性指引:初步考虑”,认为识别单个银行系统重要性的三个关键准则:代表表内外风险暴露头寸,即规模;代表其他银行提供相同服务的困难,即不可替代性;代表该银行倒闭时对金融系统产生的巨大负面影响,即关联性。

根据2011年7月19日巴塞尔委员会的公告,巴塞尔委员会拟使用指数法来衡量银行的系统重要性,指数由反映银行规模、相互关联性、替代性、全球活跃性和复杂度五方面12个指标构成。这种方法考虑的因素更加全面,更加突出单一金融机构对金融体系和其他金融机构的影响,更加反映金融机构之间的连接程度,更能找出具有系统重要性的银行。(见表1)

中国银监会颁布了《中国银行业实施新监管标准的指导意见》,认为中国系统重要性银行的评估主要考虑复杂性、关联性、规模、可替代性等指标。

张强和吴敏(2011)认为我国商业银行国际业务有限,因此暂不考虑全球关联性指标。他们根据《系统重要性金融机构评估指引 》和《中国银行业实施新监管标准的指导意见》,仅从上市银行关联性、可替代性、规模、复杂性4项指标评估我国银行的系统重要性。(见表2)

巴曙松和高江健(2012)结合中国银行业的实际情况,利用可观察的银行指标,对G-SIBs 评估方法进行了修改,去除跨境业务指标,建立了识别中国系统重要性银行的指标法。文中还指出,若对金融机构的系统重要性不能进行有效评估,则会产生识别不足或过度识别前者会降低监管的有效性,后者则会增加金融体系的成本。(见表3)

龚明华、宋彤(2010)综合分析了目前全球识别系统性风险的方法论和技术手段,并在借鉴国际经验的基础上,就逐步健全我国有效识别和评估系统性风险的方法和建立指标评估体系提出了相应的措施与建议。

三、结语

当前并不能精准地对银行的系统重要性进行评估,因此监管当局应结合各方面信息对其进行识别。FSB曾在《评估金融机构、市场和工具系统重要性的指引》中指出,监管当局对银行的系统重要性进行评估时,应以指标法为主,同时结合各种方法、信息进行相应的监管判断,从而精准识别系统重要性金融机构。

参考文献:

[1]BCBS,2011.“Global Systemically Important Banks: Assessment Methodology and the Additional Loss Absorbency Requirement.” Basel Committee on Banking Supervision.

[2]彭锋.系统重要性金融机构的风险度量与监管[J].中国金融,2012(3).

[3]巴曙松,高江健.基于指标法评估中国系统重要性银行[J].财经问题研究,2012(9).