欢迎来到速发表网!

关于我们 登录/注册 购物车(0)

期刊 科普 SCI期刊 投稿技巧 学术 出书

首页 > 优秀范文 > 统计学概率论

统计学概率论样例十一篇

时间:2023-07-17 09:49:54

序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇统计学概率论范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!

统计学概率论

篇1

(2)在教学过程中要将随机现象的各种形式进行数据化处理,例如,在讲到“随机变量”的概念时,可以通过丰富的实例使学生随时从网络、杂志、电视媒体中,有意识地获得一些随机数据信息,让学生理解随机数据的重要性,从而看到随机现象的规律是通过随机数据反映出来的。同时,也可以通过计算机模拟产生一组随机数,从这组随机数的不同取值说明随机变量的随机性。

(3)培养学生从统计角度思考随机现象中的各种问题,可以从身边的各种现象谈起,如心血管病是否与职业有关,人的一生是否会遇到强震,等等。从统计的角度进行分析和思考,使学生看到统计思维的合理性,从而产生对统计的兴趣,形成统计活动的良好开端。

二、收集和分析数据的作用

统计的出发点是收集数据,然后再科学的分析数据和整理数据。不列颠百科全书对统计学下了如下定义:“统计学是收集和分析数据的科学与艺术”。这就是说,统计学不仅是一门科学,而且是一门收集和分析数据的艺术,要求从数据中挖掘出新的信息,而不是死记硬套现有的公式和定理。为了突出收集和分析数据的重要性,我们在教学的过程中,可以考虑以下几个方面:

(1)首先展现给学生一系列的实际数据,比如一批电灯泡的寿命、某年级外语考试成绩等,让学生对数据有一个明确的感性认识,意识到统计是从数据出发的,先有数据,然后才有公式和定理。不同的数据具有不同的实际意义,弄清楚这些数据的分布规律和性质是统计的基本任务。

(2)强调如何有效地收集数据是统计中的重要问题,通常是从总体中抽取样本,抽样的方法是多种多样的,在教学中可以结合实例作抽样试验,比如从同一种型号的汽车中随机抽取5辆,测量每公里的耗油量;观察吞某类药物的病人的反应情况;调查部分学生的外语考试成绩;等等。

(3)分析数据是统计工作的核心,分析数据就是对数据进行加工处理,从而获取数据中关于总体的信息。通过构造各种不同的统计量,对所研究的总体进行推断,达到从部分认识全体的目的。在教学中可以通过计算机软件对数据的结构、统计量的分布作动画演示,比如数据频率直方图、经验分布函数曲线、样本均值分布直方图等,从而提高学生对分析数据的兴趣。

三、结合实例强调统计方法的重要性

概率统计是数学的一个重要分支,它的方法别具一格,无论对自然科学还是社会科学,现代统计方法是必不可少的。在教学的过程中,结合实例强调统计方法的重要性,既能加深对于概率统计理论知识的理解,又能激发学生对这门课程的兴趣,具体可从以下几个方面进行考虑:

(1)结合日常生活实例进行教学,比如统计学生中同生日的人数,随着统计人数的增加,至少有两人同生日这一事件的频率会接近于1,然后将这一结果与理论概率进行比较;统计吸烟与非吸烟人群中患肺癌的比例,检验吸烟与患肺癌是否存在某种依赖关系;观测一天中某人手机的呼唤次数,然后与泊松分布进行拟合优度检验;统计某年级的外语考试成绩,根据数据进行正态分布的拟合优度检验;等等。

(2)结合实例突出统计中的基本方法,参数估计和假设检验是进行统计推断的两种最基本的方法,其涉及的范围十分广泛,在教学的过程中应首先理解方法的基本原理和理论依据,结合典型实例进行分析,比如通过估计湖中鱼的条数,使学生了解矩法和最大似然法的原理和步骤;通过检验自动包装机工作是否正常,使学生掌握假设检验的方法步骤。

(3)结合实例系统介绍统计中的基本内容,使学生进一步认识到统计方法的实用性和广泛性,为学生在今后的学习和研究中提供广阔的应用空间。

四、从统计观点出发进行概率论的教学

“不确定性”或“随机性”是概率统计这门学科研究的对象,从统计的观点来看,“随机”并非完全“偶然”,其中蕴含内在的规律性,这种规律是对随机现象经过大量观察后得到的某种统计规律。随机事件的概率、随机变量的概率分布、数字特征等只是这种统计规律在数量上的某种刻画。目前的教学计划是先讲概率后讲统计,在讲概率时可从统计的观点出发进行概率论的教学,这样有利于对概率论中基本概念的深层次的理解和全面的把握,学生学习起来不容易出现概率和统计前后脱节的问题,有利于整门课程首尾呼应,贯穿一体,具体可把握以下几个方面:

(1)从统计的观点出发讲清楚概率论中几个最基本的概念。

(2)从统计的观点出发理解概率论中几个最基本的定理。比如从数据的分散程度理解切比雪夫不等式的含义;由频率的稳定性和观测数据的平均值的变化趋势看大数定律的意义;从大量数据的叠加的波动性理解中心极限定理的含义;等等。

(3)从统计数据出发利用现代化的教学手段进行概率论的教学。比如通过绘制数据的直方图来理解概率密度函数;由二维数据的平面散点图看相关系数的大小;通过动画演示高尔顿钉板实验来揭示中心极限定理的奥秘;等等。

篇2

二、弱化统计方法计算过程的阐述,加强方法背景、用途的介绍,增强课程的应用价值

教师对工科大学学生的授课要将概率统计定位于工具,在讲授的过程中应立足于应用,对于各种统计方法的教学,要努力帮助学生了解方法的背景、条件和用途,即重点解决有何用,如何用,何时用的问题。方法的实现则交给现有的统计软件。每一种方法都可从实例中引出,从简单到复杂,同时尽可能地联系生产实际,贴近学生专业学习,课程的应用性加强了,通过自己的实际操作,解决身边的统计问题的,既锻炼学生统计建模的能力,又能激起学生浓厚的学习兴趣。

篇3

[关键词]

概率论与数理统计课程;教学改革;应用心理学专业

概率论与数理统计是研究随机现象客观规律性的数学学科,是高校应用心理学专业的一门重要基础课程。各种处理数据的原理和方法已渗透到心理学专业的各个领域。学好该门课程,对于培养学生的数学思维、数学方法具有十分重要的意义。然而,随着地方性本科院校的转型发展和应用技术型人才培养的驱动,公共数学课堂教学学时在逐渐压缩,如何在有限的课时条件下提高应用心理学专业概率论与数理统计的课堂质量和效率、如何激发学生的学习潜能、如何培养学生运用概率统计原理和方法解决专业实际问题的能力是我们面临的重要课题。

一、应用心理学专业概率统计课程教学现状分析

(一)概率论与数理统计课程分析概率论与数理统计是非数学专业的一门基础课,是许多后续应用课程的基础,包含概率论与数理统计两大部分。概率论理论性较强,旨在训练学生的逻辑推理能力;数理统计部分强调应用性,旨在培养学生的实际应用能力和动手操作能力。传统教学中,大部分时间用于系统讲授理论知识和公式推导,旨在培养学生的解题能力,并以期末卷面成绩来判定该课程的教学效果和学习效果,而在实际应用方面很少“着墨”。同时,普遍认为其内容是“前难”加“后繁”。“前难”是指概率部分涉及到古典概率和随机变量分布函数等方面的题目难度大,容易出错;“后繁”是指统计部分各种统计方法的原理与思想既抽象又繁琐,不易理解[1]。因此,如何改进传统教学模式以适应转型期学生的需求成为当前概率论与数理统计课程教学改革的一个热点。

(二)应用心理学专业对概率论与数理统计课程的需求随着经济的发展和社会文明的进步,心理学的应用范围日益扩大,显得愈来愈重要,高素质的应用心理学人才也就成为当今时代的迫切需求。概率论与数理统计作为应用心理学研究方法的基础课程显得尤其重要,因为该课程是应用心理学专业后续方法类课程如心理统计学、心理学测量学、实验心理学等课程的先修基础课程,对后续方法类课程中学生能否熟练合理应用心理学专业知识开展实际调查、测评等工作有影响。作为应用心理学专业的必修课,概率论与数理统计课程是培养高素质的应用心理学人才扎实的心理学理论与研究方法的基础课程。而作为文理兼容的应用心理学专业,学生的数学基础差异性比较大,目前存在部分学生难以跟上教学进度、理解知识原理不透彻、应用知识的意识与能力不强等问题,对有高要求的概率统计课程如何教学值得探讨。

(三)应用心理学专业概率论与数理统计课程教学存在的问题传统教学模式无法激发学生的学习兴趣。在应用心理学专业的概率统计教学过程中,学生普遍认为:概念抽象难以理解,思维不易展开,方法很难灵活掌握,实践脱节联系不强,从而缺乏对该课程的学习兴趣;特别对文理兼招的应用心理学专业,学生数学基础不扎实,如果课程的教学仍采用“一支粉笔”加“一块黑板”的形式,必将造成教学过程的枯燥乏味,无法达到预期教学效果,更不能谈及培养学生的学习兴趣和积极性[2]。“灌输式”教学方法严重约束了学生的思维。抽象的课程内容、有限的教学课时、数学基础相对较差的心理学专业学生,使得概率论与数理统计课程的教学变得异常沉闷,教师想把思维展开,但往往因担心内容过多让学生无法接受而放弃;教师想把某些知识点讲解透切,又因担心完不成教学计划而只得匆忙地将知识点直接输灌给学生,结果造成学生一定的思维定势,使思维得不到应有的锻炼,学习能力得不到应有的提高,学生的创新思维也得不到提高。学生缺乏课程实践,达不到学以致用。在应用心理学专业的日常教学中,概率论与数理统计课程在学生对知识内容的应用方面考虑较少,更多时间放在其理论知识的讲授;在人才培养方案的制定中,实践环节的学时安排过少,造成理论与实际脱节。学生为了期末及格而学习,很难解决实践之需,更难谈及为地方区域经济的发展提供应用型人才。

(四)心理学专业概率论与数理统计课程考试存在的问题湖南人文科技学院的心理学专业概率论与数理统计考试成绩一直以来分两大部分:期末考试成绩占80%,平时成绩占20%。平时成绩主要考查作业和考勤,考勤操作容易,但作业的评价不易:学习态度认真的学生作业比较“差”,相反成绩差的学生为了提高平时成绩,作业抄得非常“好”。加上单一的期末闭卷考试偶然性比较大,用一次考试成绩来反映学生的水平难以服众,即使是成绩好的学生,对用统计思想和工具解决实际问题,也常束手无策。

(五)应用心理学专业学生学习概率论与数理统计存在的问题其一,学生的数学基础较薄弱,学习兴趣普遍较低。为了更好地了解学生的学习情况,我们对心理学专业2013级和2014级学生做了调查,结果表明,对数学感兴趣的学生占的比例很低,不到30%。这与平时上课学生“低头率”高,玩手机比较普遍的情况相吻合。其二,学生的学习目标不明确。我们在对2013级和2014级应用心理学专业100多名学生的调查中发现,超过50%的学生认为,概率论与数理统计是必修课,不得已而学之。平时学习,主要是为了应付考试,顺利拿到学分,期末考试不挂科。其三,教材内容单一。尽管现在概率论与数理统计所用的教材版本很多,但是教材内容差别不大。书中的例题和习题大致差不多,没有考虑学生层次和专业情况而设置相关的内容,就是本校开发的教材,也大多为了应试而达不到应有的效果。

二、应用心理学专业概率论与数理统计课程教学改革实践

随着地方性本科院校的转型发展和应用技术型人才培养的驱动,结合近几年来我们对心理学专业概率论与数理统计课程的教学与思考,在如何提高应用心理学专业概率论与数理统计的课堂质量和效率、如何激发学生学习潜能、培养学生运用概率统计原理和方法解决实际问题的能力方面,我们进行了如下探索。

(一)吃透概念,淡化推导多年前,在概率论与数理统计的教学中,基本都是采用讲授法。其教学内容也大同小异,偏重于例题和公式的讲解,强调学生的概率统计运算能力和技巧的训练,却忽视了基本概念思想、统计模型原理、各种统计方法的讲解和介绍,是为学生考试而学习,学生并没有真正做到理解概念,吃透概念。把概率论与数理统计课程的思想讲解清楚,才是课程教学的关键,而最能体现出数学思想的,无非就是概念的讲授[3]。概念看似简单,但富有抽象性,最不好讲。如何把它的本质通过通俗易懂的形式展现给学生,这需要老师扎实的功底;数学思想也能在公式的讲解上体现,教师不是一味地强调它多么重要,而必须讲清楚公式的用途,在实际工作中能够解决什么问题,引导学生认知概念,洞悉概念内涵,体味其中的方法论和实际运用价值。只有这样,学生才能真正懂得这个公式怎么去用,至于公式的推导,宜简则简,甚至可以一笔带过,可以以作业的形式让学生消化。

(二)贴近生活,实例为辅在数学类课程中,概率统计与实际生活联系最为密切,从实际生活中来,应用到实际生活中去。教师要善于创设情境,诱发学生的学习兴趣。比如古典概率教学中的“生日问题”全概率公式和贝叶斯公式教学中的“产品次品数问题”、数学期望教学中的“奖金额确定问题”、正态分布教学中的“招聘考试问题”等,这些例子来自于生活,也服务于生活,既充满兴趣又有益于专业的发展,更能使学生感受到生活中数学的无处不在,从而感悟数学的魅力,享受探究的乐趣,激发学生的求知欲和活跃课堂气氛[4]。

(三)“收”“放”有度,调教心身应结合应用心理学专业学生数学基础知识薄弱、学习兴趣低、个体差异显著的特点,大学数学等基础课程的课堂教学学时压缩的客观现实和学校的办学定位,以及网络信息的完善,在教学中用通俗易懂的语言帮助学生理解抽象定理,用学生感兴趣和紧靠专业的实例予以探讨,让学生充分体会到概率统计知识和思想对将来学习与工作的重要影响,提高学生学习的内动力,淡化概率统计复杂的数学推导过程。此外,对某些重要的概念可以适当地展开,刺激学生的创新能力。对进一步深造的学生,可以引导其通过网络学习达到既定要求。当前,独生子女在大学生群体中占多数,自尊心强、好胜逞能、承受能力弱、自私摆酷,成了他们复杂的心理构成;加上就业压力大,以及自身所收集的学习和就业信息不全面,由此产生负面影响,导致“期末考试不通过,补考一定过”的心理,学习不主动、课堂旷缺比较多、“低头族”现象普遍。因此,教师在课堂教学中要合理渗透情感教育和育人思想,帮助学生树立正确的人生观和价值观,就必须把握教学中的“收”与“放”[4]。

(四)重构教学关系,“授人以渔”网络模式的教育和学习以其不受时空限制、交互性好、优质资源多、使用便捷等优势,不仅成为学校教育的一种创新模式,而且成为全民教育与终身教育体系的重要组成部分。传统教学方式上,课堂讲授成为学生知识获取的主要途径。随着信息化、数字化的发展,传统的教育理念和学习观念、学习方式表现出多方面的不适应性,学生上课玩手机现象普遍、到课率低已经成为大班授课的通病,上课打瞌睡现象严重,晚上通宵上网比较常见,致使教学效果大打折扣,教学评价也出现尴尬局面。在教育教学改革的大背景下,“教”与“学”关系重构,由“以教学为中心的教育”转变为“以学习者为中心的教育”[5]。因此,需要重新改造传统的教育管理模式,改变传统的组织教学模式,课堂教学更加侧重互动和问题的解决,而不是知识的传授,这就对教师的要求从侧重传授知识,转变为侧重传授学习和思维方法,也就是我们所说的“授之以鱼不如授之以渔”。

三、教改前后概率论与数理统计课程教学效果调查与考试成绩比较

(一)教学效果的调查与分析学习兴趣是一种心理状态,较高的兴趣能使学生更好地明白本课程的重要性和学习该课程的意义。通过与应用心理学专业的部分学生交流发现:课程内容是否有趣、生动,学生是否意识到该课程对后续专业课学习、今后工作与发展有重要的帮助,这些都直接影响到学习效果;同时,从学生平时缺交作业的情况和到课率也能说明教学的效果,调查结果见表1。在2014级应用心理学专业的教学中,我们根据具体的教学内容选用合适的教学方法,选择与专业和生活密切联系的案例,通过对案例的讨论达到掌握概率统计思想与方法的目的,教学中明显感到课堂更加活跃,这从学生的交流中也得到了肯定。

(二)概率论与数理统计课程考试成绩的比较通过教学改革,2014级应用心理学概率统计成绩相比于2013级总体提高:90分以上成绩人数从5.48%增加至9.21%,及格人数从78.08%上升至82.89%。可见,教改激发了学生的学习潜能,课堂一改往日沉闷气氛,课程成绩、学生应用能力提高较快。

参考文献:

[1]曾善玉,张录达,刘文芝,等.《应用概率统计》课程教学改革的研究与实践[J].高等农业教育,2000(7):53-54.

[2]陆静,翟娟.应用型人才培养观下概率统计课教学改革探讨[J].广西民族师范学院学报,2013(6):90-92.

[3]张翠杰,刘广瑄.CDIO教育理念下概率论与数理统计课程教学改革的几点思考[J].数学学习与研究,2014(12):65-66.

篇4

中图分类号: C829. 2

《概率论与数理统计》是研究随机现象客观规律的一门学科,由于其理论知识的抽象性和思维方法的独特性常常造成学生理解和接受上的困难!特别是在大数据与大众创新双重背景下,随着数字化的进程不断加快,人们越来越多地希望能够从大数据中总结出一些经验规律从而为相关的决策提供一些理论依据[4]。因此积极探索概率统计的创新教学模式[2,3],显得尤为必要!

一、明确教学目标―是教学创新的源泉

高校概率统计学科教学, 对于培养和发展学生的数学素质具有极为特殊的重要作用!在教学中, 我们把教学目标定位在培养和发展学生随机数学素质,体现在重点培养学生四种思维能力:一是随机性思维,即以随机数学解释客观世界的偶然性(随机性)现象的思维。二是公理化思维, 即突出精确性、形式化和符号化。三是模型化思维, 通过建模来刻画事物本质,是该学科应用的基本方式。四是“大统计学”思维,即认识大数据、收集大数据与分析大数据的思维[4]。

二、整合重组教学内容-使创新建立在优化的知识结构上

创新能力的培养, 总是依托一定的知识来承载。知识是创新的源泉,创新是知识的转化与整合。根据创新教育特点, 紧紧围绕培养学生随机性数学素质和创新能力需要, 精选教学内容,坚持整体优化, 着眼发挥知识结构的整体功效, 注重知识之间的相互联系, 选择多方面、多类型的知识,形成创新的知识体系。因此, 可把课程内容整合成三大类知识:一是核心理论知识。主要包括概率论知识、统计学知识、“现代统计分析方法与应用随机过程等理论知识。二是方法性知识。主要指不确定性分析、随机分析、统计推断和大数据技术等方法。三是应用性、前沿性知识。这些知识的学习对培养学生的创新精神和创新能力不无裨益。

三、优化教学过程-体现在创新教学方法上

为了优化教学过程,我们尝试教学方法与手段的多样化, 使讲授、操作和实践相结合, 教学时倡导学生将动手实践、自主探索与合作交流等作为主要学习方式,使学习过程变为一个生动活泼的、主动的和富有个性的过程。经过尝试,初步取得了成效。

(一) 注重数学思想和方法的教学-选讲概率统计史料[1]。引导学生认识其发展历史,激发其学习的动力!比如通过选讲概率统计学家泊松、贝努利、高斯、贝叶斯等对概率统计的贡献,培养学生的创新意识和重新发现“概率统计”的能力,增强其学习兴趣和自信心。

(二)采用案例教学法[3]培养学生的创新思维能力。如选用古典概率公式解决“鞋子配对

收稿日期:

基金项目:国家自然科学基金(11461061)和重庆师范大学博士启动基金项目(15XLB013)资助.作者简介:康元宝(1973-),男,甘肃泾川人,讲师,博士,主要从事随机分析和数学教育育研究.

问题”与“概率与密码问题”等,又如运用“统计估计”思想与“假设检验”方法解决“先尝后买产品的促销问题”、“吸烟与患癌症的相关性”;以及用中心极限定理解决“保险公司盈利与亏损的问题”等等。促使学生养成科学创新思维的习惯。

(三)结合实际,培养学生利用概率统计建模能力。从理论的掌握到应用不是一件容易的事情,学生创新能力的培养是一项艰巨的任务。在教学中, 我建议通过成立概率统计学习兴趣小组,培养学生创新能力。每周活动1― 2 次,经过指导他们学习的方法,并使之充分认识概率统计的实用性,进而培养其创新能力。如鼓励学生通过建模来解决一些实际问题。如分析学生学习成绩与性别的关系,考察入学成绩与在校成绩的相关性等;还可拿出一些相应的全国大学生数学建模题让学生探讨研究,如2014 年A 题的城市表层土壤重金属污染分析问题,可用统计分析等方法解决。这样更能够增强学生的应用意识,培养学生的创新能力!

四、转变评价观念――实施科学的考核评价

评价是教学过程中非常重要的环节。但过去常常把“考试”作为衡量学生学习结果的工具, “一考定终身”。因此, 出现了教学过程中“教”和“学”的目的似乎纯粹是为了“考”的奇怪现象! 这是应试教育的典型特征与悲剧! 我们在概率统计创新教学中,需要转变评价观念, 坚持“考”为教学服务、为培养创新人才服务, 把考试作为实现教学目标的重要手段, 积极改革教学评价方式, 实施科学的考核评价。彻底改变唯分数论的教学评价体系!实行平时考核与期终考试相结合, 加强平时考核检查力度。最后通过成绩分析和反馈改进教学。如对成绩分布情况进行分析, 看是否符合正态分布,利用方差分析判断学生的学体水平和发展趋势。经过对每道题的得分情况进行统计分析, 评价学生对每个知识点的掌握情况和运用能力, 找出薄弱环节, 以便对原教学设计进行调整和改进。再对试题和试卷的信度、效度、难度、区分度等进行全面的分析, 利用最小二乘回归方法检验本次考试的质量, 提出改进措施, 以利于科学的考评!此外,也可通^贯彻如下教学创新模式:注重培养学生自主创新、多向发展和学以致用!

参考文献

[1]. 徐传胜. 运用实际问题改进《概率统计》教学[J] ,数学教育学报, 2000 , 9 (4) : 91~94.

篇5

概率论与数理统计是高等院校理工类、经管类的基础课程, 很多同学认为该课程难理解、没有用,不重视这门课的学习,这严重影响了对后续专业课程的理解。作为老师,应激发学生求知欲,调动其学习积极性。而“良好的开端是成功的一半”,因而设计一堂富有启发性的绪论课尤为重要。本文从三个方面探讨如何上绪论课。

一、起源介绍

概率论产生于17世纪,传说有一个江湖骑士在赌博中遇到“点的问题”,即:“假设两个赌徒相约赌若干局,谁先胜3局就算赢,全部赌本就归谁。但是当甲胜了2局,乙胜了1局的时候,由于某种原因,赌博终止了,问:赌本应该如何分才合理?乙认为:甲再胜一局就赢了,而自己再胜两局也赢了,所以赌本应该按2∶1分。甲认为:即使乙下一局胜了,两人也是平分秋色,各自收回赌注,然而自己还有一半的可能获赢,故认为赌注应该按3∶1分。这两种分法似乎都有道理。这位骑士将这问题请教帕斯卡,帕斯卡则将这个问题连同解法写信给费马,两人经过讨论取得一致的看法:甲的分法是对的。分赌本问题促使何兰数学家惠根斯完成了《论赌博中的计算》,这是关于概率论的第一本书。

统计学起源于中世纪,那时欧洲流行黑死病,死亡的人不少,英国学者葛朗特几十年来对死亡与出生情况资料加以整理。而1662年葛朗特发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。同时,数理统计学起源于天文和测地学中的误差分析问题,由于测量工具精确度不高,于是通过多次量测获取更精确的估计值。

通过这样介绍,让学生明白这门课来源于经济、生活问题,所以这门功课和经济与生活密切相关,从而激发学生学习这门课的兴趣和积极性。

二、研究内容

在讲解这部分内容时,先下定义:概率论与数理统计是研究随机现象及其统计规律性。进一步解释什么是随机现象:事前不能预知结果。

为了进一步理解随机现象,举例说明。

例.下列现象中哪些是随机现象?

A.在一个标准大气压下,水在100℃时沸腾;

B.掷一颗骰子,其出现向上的点数;

C.新生婴儿体重。

总结随机现象的特点:出现的结果是多个可能结果中的一个,“每次结果都是不可预知的”;但“所有可能的结果是已知的”。

举一大家熟悉的话,体会概率论与数理统计的应用。

例:“天有不测风云”和“天气可以预报”有无矛盾?

最后介绍一下本课程各章节的内容,参考书目。

三、学习意义

概率论与数理统计与生活实践密切相关,它可以应用到很多科学技术领域中。例如,电子产品寿命分析、生产产品质量检验、设置公交车路线、公用自行车站点、各种保险、种群增长问题、生物统计学。

举几个和日常生活相关的例子激发学生的好奇心与学习兴趣:

例1.考虑有两个小孩的家庭:(1)若已知某一家有男孩,(2)若已知某家第一个是男孩,问两种情况下这家有两个男孩的可能性是不是一样?

例2.某工厂有机器300台,设每天每台机器出现故障的概率为0.02,求一天内没有机器出现故障的概率。

学习这门课可以锻炼人的思维方式,培养发现、分析和解决问题的能力,为以后的专业课学习打下基础。

概率论与数理统计的绪论课是整个教学的第一课,绪论教学对学生有“先入为主”的影响,使学生对这门课的学习内容、整本教材的结构有快速的认识,绪论可以激发学生的学习兴趣,绪论课的好坏直接影响到学生对这门功课的学习。

参考文献:

篇6

中图分类号:G642 文献标识码:A

《概率论与数理统计》不仅具备严密的理论性又具有广泛的实践性,其主要理论是通过对随机现象的大量观测和试验去把握不同现象内在的规律即统计规律。在观察、描述、分析和解决问题的思想、方法上与其它数学学科不同,其中众多概念和题目通常具有很强的实际背景。因此,教学中采用案例研究的教学方法――在教学过程中将真实的事件或专业课程中的具体问题提供给学生进行讨论、分析,对加强直观理解和激励学生主动参与学习活动有极大的促进作用,同时能培养学生构造和分析概率模型的能力。特别是典型案例的选取,对新课题的引入、知识的应用、学生学习情趣的激发和课堂参与力的提高等方面都有非常重要的作用。

1历史背景的介绍,点燃学生的学习热情

抽象性是数学的显著特点之一,在教学中引入概率统计的相关历史和发展背景,使学生在学习知识和方法的同时,了解概率统计发生、发展的历史脉络,得知概率统计还是一门年轻的科学,还需要不断地发展与完善,从而激发出他们学习的兴趣与热情。例如,在讲解古典概型时,介绍法国数学家帕斯卡和费尔马从对掷骰子游戏中赌资分配的讨论,开始了概率论和组合论早期的研究。又如,在泊松分布之后介绍泊松,作为著名数学家、物理学家和力学家他在各个领域都有卓越贡献,在概率统计领域中,他改进了概率论的运用方法,特别是用于统计方面的方法,建立了描述随机现象的一种概率分布──泊松分布。推广了“大数定律”,并导出了在概率论与数理方程中有重要应用的泊松积分。他从法庭审判问题出发研究概率论,于1837年出版专著《关于刑事案件和民事案件审判概率的研究》。

在教学过程中概括地描述概率统计发生、发展的过程,以及相关科学家的资料,不仅能活跃课堂气氛,吸引学生的注意力,也能扩展学生视野,了解相关概率知识、概率思想方法产生的历史背景,体会科学家在科学研究道路上的艰辛,培养学生勇于发现问题、克服困难的信念。

2典型案例的选取,激发学生的学习热情

概率统计是一门应用十分广泛的学科,与日常生活、科学研究、工农业生产都有着紧密的联系。在教学中选择典型、趣味性较强的例子,不仅能让学生理解抽象的概率公式,更能极大激发学生的学习热情。

例如,校园中顺丰快递车每日运载100件包裹,每件包裹的重量是独立的随机变量,且是在0.2kg至5kg之间的均匀分布。那么这100件包裹总重量超过300kg的概率是多少?

如果直接计算总重量的分布,从而计算该概率是不容易的,但是在介绍了中心极限定理后,可以很容易计算出来。中心极限定理不仅在理论上,而且在实践中也非常重要。从应用的角度,利用该定理可以不必考虑随机变量的具体分布,避免分布列和概率密度函数的繁琐计算,而只需要均值、方差的信息和标准正态分布表即可。该例题与学生的生活经历密切相关,而且其解题思想方法正是中心极限定理的应用,让学生感受生活中处处都蕴含了概率的思想。

又如,正态随机变量在概率论中起着十分重要的作用,在物理、工程、统计学中都有广泛运用,因此,结合专业特点,可以介绍信号处理和通信工程中的典型例子:信号处理。假设某个传输信号为X,记X=1或X=-1。 由于通信技术误差,在接收端得到的是加有噪声的信号,设噪声N是一个正态随机变量,均值为 =0,方差为 2。如果收到的混有噪声的信号大于0,则判断信号X=1,如果收到的混有噪声的信号小于0,则判断信号X=-1。问这种判断方法的误差有多大通过这种具有较强专业特点的案例,能充分调动学生的积极性,促进他们的课堂参与力,培养学生的数学建模能力。

3案例教学中存在的问题

案例教学对促进学生感受知识的产生、发展和应用有较大的作用,但在实际教学中存在一定的问题。首先,案例的选取,这也是案例教学中最重要的环节。一般情况下,案例必须具有典型性,但往往又缺乏了新意和吸引力。因此,在案例的选择和编排上如何进行取舍和改编是一个难点,对任课教师也是一个巨大挑战。其次,由于《概率论与数理统计》作为基础课面对的都是大二学生,多数学生还没真正接触专业课的学习,教学中面对专业性较强的案例,学生多数情况下不能理解甚至完全不懂实例的基本原理,答非所问,最终导致浪费大量时间解释例子,而忽略了案例的本质作用,有舍本求末之状。最后,由于数学课教师基本都是学习数学理论,在实际应用方面有很大的不足,在案例分析方面有所欠缺,分析不够深入全面。对于某些专业性较强的案例也无法驾驭,因此在教学中无法真正展现案例教学的精彩。因此,教师应不断提高自身综合能力,加强专业知识的学习,增强实际能力。

案例教学作为一种以应用为目的的动态教学模式,对学生感受知识的产生、发展和应用都有积极的促进作用,在培养学生分析问题、解决问题、创新问题上有重要的指导作用。因此,案例教学在培养应用型人才教育中有其重要意义。但案例教学在数学课程中的应用还处于初级阶段,还需要更多教师在教学实践中不断完善、丰富。

篇7

在培养目标上,两类硕士差距就更加明显了。学术型硕士要求可以进行基本的专业理论研究,有继续进行高等理论研究的素质和潜力,其中的一部分人可以继续攻读本专业及相关金融、管理、经济等相关专业的博士学位,学术性的硕士生更强调理论学习和理论基础的训练。专业学位硕士则要求较好的专业知识实用能力,了解掌握常用统计方法的思想和软件应用,实践能力强,具有分析解决带复杂数据分析背景的实际问题的潜力,强调的是学生对实际问题的处理能力,各种统计方法的综合运用及实战能力。在国外发达国家,目前均有应用统计专业学位博士,就是说将来在我们国家,优秀的应用统计专业学位硕士可以进一步攻读专业学位博士,这类博士应该对实际问题有敏锐的眼光,对各种实用的统计方法有全面的了解,知晓其长处与不足,可以解决复杂的实际数据分析问题,因此应用统计专业学位硕士的概率理论基础训练应更加倾向于实际,倾向于在统计学中大量用到的概率论知识。这就决定了对两类硕士在概率论基础知识要求方面有很大不同。在概率论基础方面,由于两类生源的本科知识体系中都是以《概率论与数理统计》课程为起点,概率论部分基本相同,内容是:概率基础及公式,随机变量及分布,随机向量及分布,数字特征及计算。在硕士生阶段应在此基础上考虑两类硕士的培养目标的差异,分别在概率基础课程中安排不一样的教学内容和重点。

篇8

一、概率论与数理统计教学中的“数学焦虑”现象

(一)知识需求和教学之间的矛盾

概率论与数理统计是数学基础课中应用性较强,与现代经济、金融、统计、管理密切相关的一门课程。随着信息技术的不断深入发展,概率论与数理统计越来越重要,然而概率论与数理统计的教学质量却是一个值得探讨的问题。在概率论与数理统计的教学中广泛面临学生积极性较低、理解程度偏低、考试通过率较低的问题。从心理学的研究成果看,这些现象都是“数学焦虑”现象的反映。

(二)数学焦虑是概率论与数理统计教学的重要挑战

数学焦虑是指个体在处理数字、使用数学概念、学习数学知识或参加数学考试时所产生的不安、紧张、畏惧等焦虑现象。因为数学学习的抽象度在所有学科之中较高,在学习过程中充满探索和挑战,也会不断遇到挫折。不管你是谁,当你解决问题或者思考问题时都会面临大量挑战。数学焦虑是影响数学教学质量的主要原因之一,在全世界的数学教学中,普遍存在数学焦虑现象。由于概率论与数理统计是数学基础课中应用性较强一门课程,因此数学焦虑是概率论与数理统计教学的重要挑战。

二、进化心理学视角下的数学焦虑现象

(一)焦虑机制的形成原因

从进化心理学的角度看,焦虑情绪和风险厌恶倾向,事实上是进化过程中人类形成的一种自我保护机制。焦虑是一种帮助人类侦测并应对环境中威胁因素的心理机制,从而提高人类在危险环境中的生存概率。出现焦虑情绪的概率是和人们感到的危险程度和危险频率成正比的。由于人类在相当长的时间内都处于极低生产力的部落社会,因此形成了对未知事物的强烈恐惧。在所有的未知事物中,只有极小部分是对自身有利的,人类需要保持对大多数陌生事物的戒备。焦虑情绪及伴随焦虑而来的心跳加速、不安、紧张、恐惧等,都是为了帮助人们应对环境中的威胁。

(二)概率论与数理统计知识和焦虑情绪的关系

心理学家指出人类社会在最近五百年内实现了科技和社会的跨越式发展,而人类在生理上仍然保持着四万年前的结构。对于四万年来未产生生理进化的大脑来说,数学知识和概率论与数理统计知识是陌生而复杂的事物,因此大脑对其的本能反应是焦虑和逃避。这一心理结构在几乎没有理性知识的原始社会中,能够帮助人类避免大量的潜在危险,但是在知识决定生产力的今天,这种深藏于本能之中的心理结构就成为阻碍复杂知识学习的一堵墙。

三、从认知心理学角度分析概率论与数理统计教学中风险的来源

数学焦虑是学习过程中存在的威胁因素造成的情绪反应。概率论与数理统计学习过程中的威胁因素来源于三个方面:一是学习过程中的有限的工作记忆,二是焦虑情绪对于工作记忆的显著干扰,三是概率论与数理统计的学习容易遇到挫折。这几个威胁因素的共同作用,导致学习概率论与数理统计是一个充满困难和挑战的过程,很容易使学生产生焦虑情绪。

(一)概率论与数理统计学科特性导致的认知困难

学习过程中威胁的第一个来源,是概率论与数理统计学科的抽象性对工作记忆容量和注意力强度提出很高的要求。概率论与数理统计理论是由环环相扣的严密逻辑体系构成的,其知识点和知识点之间有着逻辑上的高度关联性。概率论与数理统计理论包含的信息量很大,不仅包含概率论和微积分的基础模型,还包含科学方法论模型。由于理论较大的信息密度和抽象程度,对于学习时的工作记忆要求很高,从而需要学生保持高度的注意力。如果注意力不集中,或者出现情绪上的干扰和波动,认知过程就可能被打断,难以再理解讲课的内容。

(二)焦虑情绪和工作记忆之间的正反馈

学习过程中威胁的第二个来源,是焦虑情绪上升和工作记忆下降的正反馈关系,所造成的心理恶性循环。解决概率论与数理统计问题需要学生调用大量的工作记忆,焦虑情绪的出现会导致工作记忆下降,学习容易出现错误和焦虑。以上因素的相互作用,就构成了一个正反馈回路,即学习上的挫折形成了焦虑情绪,焦虑降低了工作记忆的容量,工作记忆下降导致了概率论与数理统计成绩下降,不佳的学习表现使数学焦虑更严重了。一旦触发其中的任一环节,就会导致焦虑情绪不断加重。

(三)出错率高导致的较高焦虑情绪

学习过程中威胁的第三个来源,是概率论与数理统计学习过程的出错概率高,从而导致更强的焦虑情绪。当学生要进行假设检验的应用,必需的知识包括:样本与总体、随机变量、随机变量的分布与抽样分布等。缺少了任何一个知识点,都无法理解假设检验的原理和应用。这样就构成了一个串联系统可靠性分析的模型。如果这些知识中有部分掌握得不好,就比较容易出错,从而产生较高的焦虑情绪。

四、降低数学焦虑的措施

(一)以提高学习动机为主要应对措施

由于是多个因素共同导致概率论与数理统计教学中的数学焦虑,要缓解数学焦虑对于概率论与数理统计教学的影响,也就需要从多个角度入手,进行综合性的应对。一方面,要加强学生对概率论与数理统计价值的认识,消除学生对概率论与数理统计的陌生感,激发学生的学习动机。另一方面,要从认知心理学的原则出发,在教学过程中防止工作记忆不足和焦虑情绪之间形成恶性循环。但是这三个风险有一个共同的背景原因,就是因为学生对于概率论与数理统计的价值认识模糊,所以不重视概率论与数理统计,从而没有投入时间来了解概率论与数理统计应用并训练概率论与数理统计技能。这样就导致理论学习时间不充足,知识的应用训练也不充足,最终导致知识的“学不懂”和“用不上”。应对学生的数学焦虑,要抓住这个源头。因此,为了缓解在概率论与数理统计学习中的数学焦虑,很重要的一个措施就是让学生明确学习概率论与数理统计的价值,并且辅助于教学和作业考评上的手段。

(二)通过概率论与数理统计技能的高需求以激发学生学习动机

通过分析劳动力市场和科技进步的趋势,帮助学生明确学习概率论与数理统计的价值,是激发学生动机的有效手段。在劳动力市场上,统计学专业毕业的学生,薪资在不断增加。无论是金融行业、政府还是互联网行业,数据分析的需求都在快速增加,这些行业都在争取拥有统计技能的复合型人才。这些行业都需要优秀的统计学人才分析数据、解读趋势、判断机会。在这两个趋势之下,统计学专业的人才薪资水平不断增长。明确了学习概率论与数理统计的价值,学生感受到学习的不确定性也就相应降低了,学习动机也会有较大的提高。

参考文献:

[1]陈英和,耿柳娜.数学焦虑研究的认知取向[J].心理科学,2002,25(6):653-655.

篇9

当今,国际竞争实际是人才的竞争,而人才竞争实质上是教育的竞争,我国高等教育从精英向大众化过渡,民办院校承受较大的扩招压力,如何确保并不断提高教学质量成为广大教师和社会关注的热点问题,它关系到这一类学校是否能生存下去.数学是最能激发大学生的创新能力的科学,作为核心基础课程概率论与数理统计的传统教学方法和教学手段存在着诸多的弊端,在新的形势下就概率论与数理统计教学中存在的问题,探索并实践出有突破性的改革策略是民办院校高等教育的重要研究课题.

我校是地处武汉市的民办院校,学生的起点低,差距大,教师的教学能力和教学方法都有待提高.以往我们对概率论与数理统计课程的教学方法的改革不够重视,特别是民办高校面对新的形式对概率论与数理统计教学实质性改革很少,盲目模仿公立学校(一本、二本大学)甚至综合性大学的教学模式,传统教学方法制约培养新型人才.

下面结合笔者在民办院校的教学经验和心得,浅谈一下民办院校概率论与数理统计这门课的教学.

1.更新教材内容

民办高校自成立以来,概率论与数理统计教学定位不适当,基本照搬公立学校一本和二本甚至综合性大学的教学方法,没有结合民办学校的特点,内容偏多偏深,理论复杂;大多数教材内容和教师授课一般都存在重理论轻实践,针对民办高校的教材还比较少.而我校在内容偏多偏深的问题上,实施课程内容与体系结构的改革,选择合理的教学内容与结构体系,注意化解理论的难度,并适时编写出了《概率论与数理统计》教材,该书为“十二五”规划教材,系同济大学出版社出版.该书在不影响课程体系完备的情况下适当减少概率论部分的理论性和难度,从直观、趣味性和易于理解的角度介绍概率论的基础知识.对于公式用直观明了的例子引入,如用一个求概率的例子(已知袋中有5只红球,3只白球,从袋中有放回地取球两次,每次取1球,设第i次取得白球为事件Ai(i=1,2),求P(A1),P(A2), P(A2|A1),P(A2|A1))引出事件的独立性的定义,也教给了学生分析问题的方法.在讲数字特征时从已知40名学生的概率统计成绩及得分人数,通过求学生的平均成绩,推出数学期望的定义,切实结合现实例子.对于数理统计部分更注重统计方法的基本思想和原理,尽量用直观通俗的方法阐述,和实例结合起来讲解.比如极大似然法,如果说极大似然估计就是通过样本值X1,X2,…,Xn来求得总体的分布参数,使得X1,X2,…,Xn取值为x1,x2,…,xn的概率最大,这样讲会让学生觉得好难,不想接着往下听了.但换一种讲法,先举个例子(某同学与一位世界游泳冠军一起去漂流,结果发生了一次倾翻, 其中一位将另外一位给救了, 试猜测是谁救人的?)说明,学生的兴趣就提起来了,开始相互讨论.

2.运用多媒体辅助教学

多媒体教学与传统的“黑板+ 粉笔”教学有着不可比拟的优势.利用多媒体教学可以节省板书时间,又可以加大信息量,开阔知识面,提高教学效率.另外,概率论与数理统计是研究随机现象统计规律性的学科.既然是统计就需要进行大量重复的实验,这在本来课时就很紧的课堂上是很难实现的.将大量的理论知识做成幻灯片播放,把必要的图形、声音、图像结合起来传递重要的教学内容,还可以将一些案例生动地描述出来,这样就节省了大量的宝贵时间.另外,根据教学中大量计算和模型分析的需要,充分利用数学软件如Mathematics、Matlab、Excel、 Lingo 及SPSS 软件等来进行图形描绘和数据分析,这样就使比较难懂、晦涩的内容形象化、直观化,有效刺激学生的形象思维,提高学习效率.

3.引入数学史和数学文化

任何一门课程,了解它的发展史对于学习和掌握该课程的思想方法都有着深刻的意义.在上课中适当讲解数学史和数学文化,介绍中外数学简史、人物传记、重要例证及数学发展对科学技术的影响,使学生在较短时间内对中外数学发展脉络,部分数学名家的传奇人生,重大科学成就的发展历程有一定的了解,能起到开拓学生的知识视野,调节提高学生情绪和听课兴趣,吸引学生的注意力.如我在讲解概率的公理化定义时,首先引入频率,用频率解释为概率提供了经验基础,但是不能作为一个严格的数学定义,从概率论有关问题的研究算起,经过近三个世纪的漫长探索历程,人们才真正完整地解决了概率的严格数学定义.1933年,苏联著名数学家柯尔莫哥洛夫,在他的《概率论的基本概念》一书中给出了现在已被广泛接受的概率的公理化体系,第一次将概率论建立在严密的逻辑基础上.然后我就简单介绍了柯尔莫哥洛夫.柯尔莫哥洛夫建立了在测度论基础上的概率论公理系统,奠定了近代概率论的基础,他也是随机过程论的奠基人之一.1980年由于他在调和分析、概率论、遍历理论等方面的出色工作获沃尔夫奖.此外,他在信息论、测度论、拓扑学等领域都有重大贡献.他的工作为数学的一系列领域提供了新方法,开创了新方向,揭示了不同数学领域间的联系,并提供了它们在物理、工程、计算机等学科的应用前景.这样就吸引了学生学习概率定义的兴趣.在“概率统计”教学过程中,注意这些知识背景的补充介绍,可以让学生了解前后知识的联系,同时也在无形之中向他们灌输了研究问题的思想方法.对概率统计学发展史的了解,不仅丰富了学生的数学史知识,更重要的是,了解这些知识使他们能更好地理解课程内容之间的内在联系,学习的时候不再孤立地看待这些知识点,从而对概率统计知识有一个整体的认识.

4.融数学建模思想方法于教学之中

由于数学模型可以预计和分析与所研究事物相关的规律性问题,因此数学建模已经完全融入到科学研究的各个领域.概率模型是数学模型中非常重要的一种.将数学建模的思想和方法有机地融入到概率统计的教学中去,对于学生创造力、想象力、观察力、抽象思维及实践能力的培养是十分有利的.我们学校自2006起就开设了全校的数学实验和数学建模选修课程,将数学建模、各种相关数学软件和统计软件(Mathematics、Matlab、Excel、Lingo 及SPSS)的使用也恰当地融入课程教学内容当中.通过引入具体实例使学生掌握数学建模基本思想、基本方法、基本类型.通过对数学模型概念、特征的学习和数学模型应用实例的介绍,培养学生分析、解决实际问题的能力, 熟练运用计算机的能力,联想、洞察、综合分析能力.通过这些案例教学,学生亲身体验了使用概率统计知识的数学建模的过程,加深了对概率统计知识的理解,增强了应用意识和学习兴趣,同时也促进了学生主动学好概率统计课程理论知识的积极性.运用数学建模的思想,还可以把复杂的统计理论讲得具体生动和易于理解掌握.通过建立数学模型,运用SPSS参与教学则可以把这类复杂的统计计算变得轻松自如,提高了学生学习的自信心和兴趣,同时为他们今后的科研提供了一种先进的数据处理和分析方法、手段.并以每年的“全国大学生数学建模竞赛”为依托,强化利用相关数学软件来进行数学建模.目前我校自2006年参加全国大学生数学建模竞赛以来,获得过全国二等奖5次,湖北省一等奖2次,湖北省二等奖6次,湖北省三等奖5次,在同类院校中是出类拔萃的.这样既提高了学生的兴趣,又提高了教师的知名度,更加引起了学校对数学的重视程度.

【参考文献】

[1]杨叔子.文理交融打造“数学文化”特色课程[J].数学教育学报,2011,20(4):7.

[2]龚克.全国高校数学文化课程建设研讨会开幕致词[J].数学教育学报,2011,20(4):1.

篇10

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)20-0049-02

《概率论与数理统计》是研究和揭示随机现象统计规律性的一门数学学科,是高等院校工科、经济等各专业开设的一门重要的数学基础课,具有一些不同于数学其他分支的重要特点。对学生以后的专业课程(如金融学、管理学等)的学习运用、实践中实际问题(如人口模型、保险等)的处理等都起着非常重要的作用。

当前,在大力推进高等教育的环境下,面对的是全新的教育对象,存在诸多问题:(1)因地区等的不同,学生的数学基础有一定的差异,学生自主学习的主动性不够;(2)教学方法教学手段单调,如目前主要的教学手段是一般课堂板书教学方式,忽略多媒体教学与网络资料的利用;(3)考核内容和考核方式、评价方式也没变化。因此为了提高课程教学质量,促进学生的全面发展,培养高素质人才,作为高校教师有责任要努力探索和不断实践,积极开展教学改革。在总结2011年校高教课题《独立学院概率论与数理统计的教学改革研究与实践》的基础上,针对当前一般工科学生的特点(数学基础较独立学院好)和教学环境(不能全部采用多媒体教学),在实践课外作业和试题的设计、平时成绩的比例等方面不同于独立学院。因此,从教学手段、实践课外作业、考核内容及评价等方面作一些改革,通过课程改革,为教学决策提供管理依据,使决策更科学化、系统化,以提高教学管理决策者的管理水平。并通过改革,促使学生化被动学习为主动学习、自主学习,提高学生的分析问题、解决问题的综合应用能力。因此,开展《概率论与数理统计》课程教学改革的研究对提高课程教学质量具有十分重要的意义。

一、教学手段的改革

针对学生的数学文化基础的差异,学生自主学习的主动性不够,以及教学手段的单一等特点,一方面需加强课堂教学,另一方面需加强网络辅学工作。

在课堂教学方面,教学内容设计要合理;讲授内容难易要适中,重点要突出;课堂讲解系统要有条理,内容清晰易懂。如第三章多维随机变量及其分布,在内容设计上,可以改变教材上的教学次序。按二维离散型随机变量与二维连续型随机变量两条线介绍。对于二维离散型随机变量按定义(分布律、性质等)、边缘分布函数、边缘分布律、条件分布律、二维离散型随机变量独立性的判定、二维离散型函数的分布律的计算设计教学内容。对于二维连续型随机变量则按定义(含性质等)、边缘分布函数、边缘概率密度、条件概率密度、二维连续型随机变量独立性的判定、二维连续型随机变量函数的分布函数与概率密度设计教学内容。这样能使讲授内容难易适中,重点突出;课堂讲解系统而有条理,内容清晰易懂,学生易于掌握。

针对数学基础较差的同学,加强平时知识的积累。如每章要做书面小结,按时间段上交小结,根据上交的材料评分(作为平时成绩的一部分)。

在多媒体教学与网络辅学方面,完善学校网络教学平台内容,添加内容丰富、为学生所用的教学资料、实践课外作业、试题等。目的是给学生提供一个与外界交流和学习的空间,将课堂教学延伸到课外,供学生自由、自主的学习。具体做法为:(1)把知识点的分布、归纳总结重点、近几年的考研题等做成课件,上传到网络教学平台的教学资料上,学生可根据个人情况(数学基础、学习时间等)自主、自由地上网学习,有利于复习及将所学知识融会贯通,有利于学生学习效率的提高。如第四章随机变量的数字特征,把数学期望、方差、协方差、相关系数等按定义、计算公式、性质等列表整理成课件;把重要的离散型随机变量、连续型随机变量的数学期望、方差等也列表整理成课件挂在网上,供学生自主地、系统的学习,提高教学与学习效率,由此提高课程的教学质量。(2)教师编写综合课外作业上传到网络教学平台,学生可以根据自己的课外学习时间完成作业。如对应第三章多维随机变量及其分布的按二维离散型随机变量与二维连续型随机变量两条线的教学方式,编写相应的课外作业,让学生按时完成课外作业(作为平时成绩的一部分)。如设二维随机变量(X,Y)的概率密度为:

f(x,y)=Cy2,0

设计习题时可以:(1)求常数C;(2)求关于X和关于Y的边缘概率密度;并问X与Y是否相互独立?需说明理由;(3)求条件概率密度fX|Y(x|y);(4)求概率P{X+Y

P{Y

二、实践作业

针对当前学生的情况、《概率论与数理统计》课程的特点,除一定的课外综合作业外,安排一定的实践内容,这样能够理论联系实际,注重实际问题的解决;并能增强学生的实践应用能力、解决问题的能力,有利于综合素质的提高。如参数的置信区间、假设检验等,可选取实际应用题,从实际问题中让学生理解参数的置信区间、假设检验等概念及应用,这样能提高学生的学习兴趣,从而提高课程教学质量。如研究酒驾司机的责任问题,就可从实际数据出发,来研究含有酒精和不含酒精的司机之间在对事故负有责任方面有差异。如从发生汽车碰撞事故的司机中抽取2000名司机的血液随机样本,根据他们的血液中是否含有酒精以及他们是否对事故负有责任,整理数据如右表。

在整个总体中,血液中含有酒精和不含酒精的司机之间在对事故负有责任方面有差异吗?为了回答这一问题:(1)叙述原假设,并计算相应的概率值;(2)计算适当的置信区间(95%)来说明差异有多大;(3)从这一数据如何说明“酒精增加了事故的发生率”。

此问题有一定的实际价值,学生不仅能理解统计学中的相应概念,还能从解题过程中了解到它的实际意义。通过计算与分析,含酒精的对事故负责任的概率远大于不含酒精的,即酒精增加了事故的而发生率。做到自己、劝导别人酒后不驾车。

三、考核内容、考核方式(评价方式)上的改革

1.在考核内容上。①增加一定量的前后章节联系的综合题。以往综合的较难的题的分值较少,一般5分左右,学生的成绩没有拉开距离,因此增加一定量的前后章节联系的综合题,提高分值到10左右,以便拉开分值。并可考虑是综合课外大作业中的部分题型,还能了解学生是否是自己独立完成课外作业的。目的让学生有科学的思维方法,学会知识的融会贯通,更好地掌握知识。②以往,期末考试中置信区间与假设检验相关内容一般会有1-2个大题,分值一般为12~20分,主要考察学生对公式的记忆。因涉及到的统计量的公式较多,学生做的结果往往不是很理想。因此,为了更好考察学生对知识的理解,考察置信区间与假设检验相关内容时,主要考察学生对置信区间与假设检验相关内容的理解,它们的思想与方法。对这方面的内容,主要放到实践课外作业上,即有1~2个关于置信区间与假设检验的实践应用题。以全面考察学生利用理论知识解决实际问题的能力。这样不用单纯的背公式,并能照顾到不同层次的学生,成绩会有一定的合理性,即较好地符合正态分布。

2.考核评价方式上。以往,学生的总评成绩按平时(含作业、考勤等)10%,期中20%,期末70%计算,不能较好的评价学生的平时学习过程。因此,课程的考核评价方式为平时50%,期末50%;其中平时含考勤与小结(15%)、课外与实践作业(20%)、期中(15%)。此方案既符合学校关于课程考核管理的规定,又加强了平时学生的学习过程,同时照顾到不同层次的学生,也能体现了该课程的特点与要求,且容易实施,能全面促进学生对知识的掌握和学生的自主学习。

四、结束语

通过《概率论与数理统计》课程教学改革的研究,引导课程建设的方向、指导任课教师逐步改进教学方法,促使学生化被动学习为主动学习、自主学习,提高学生理论联系实际、分析和解决问题的能力,促进学生综合素质能力的全面发展,对提高课程的教学效果与教学质量具有重要意义。同时可推广到其他课程的课程教学改革的研究,为其他课程教学质量的提高提供借鉴与参考。

参考文献

[1]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社.

[2]张嵘.《概率论与数理统计》的通俗化教学的探索[J].甘肃联合大学学报(自然科学版),2013,(5):115-118.

篇11

作者简介:康国栋(1983-),男,土家族,湖南张家界人,吉首大学软件服务外包学院,讲师;周清平(1965-),男,土家族,湖南省张家界人,吉首大学软件服务外包学院,教授。(湖南?张家界?427000)

基金项目:本文系吉首大学教学改革项目(项目编号:2011JSUJGB25)的研究成果。

中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)22-0083-02

“概率论与数理统计”课程涉及的范围相当广泛,凡是涉及数据的收集、整理、分析、可视化和解释方面的问题,都是概率论与数理统计学大显身手的舞台,[1]由此可见此学科在计算机科学中的重要地位。随着软件技术的发展,概率论与数理统计价值也越来越得到凸显,软件系统的开发与设计实践能把“纸上谈兵”的数学模型变成可行的算法并加以实现,理论在显示强大力量的同时也露出了有趣的一面。如果不注重概率论与数理统计学的应用和直观性,将导致数学的孤立与衰退。尤其是在软件飞速发展的今天,概率论与数理统计科学与软件实践难舍难分。因而软件工程专业概率论与数理统计的教学改革必须围绕软件工程专业的人才培养目标,必须以软件行业的人才需求为核心。我国对软件工程专业的要求是培养“实用性、复合型及国际化”的软件工程人才,在人才培养过程中强调自主思维能力与工程实践能力培养并重的理念。其课程体系与传统的计算机专业相比,理论课时偏少,使“概率论与数理统计”课程在实际教学中出现了教学内容多与课时少的矛盾。因此,如何充分发挥教师的教学能力和调动学生学习的主观能动性,如何做好软件工程专业“概率论与数理统计”的教学,是当前亟需解决的问题。在近来的教学实践中,努力尝试了一些教学改革举措,得到了一些成功的经验。本文拟从教学内容、教学方法、考核方式等几方面分别进行探讨。

一、“概率论与数理统计”教学改革的基础

1.软件工程专业“概率论与数理统计”课程的定位

要做到真正意义上的“概率论与数理统计”教学改革,首先必须做好该学科的定位,提高学生、老师对其认识水平。当前,社会各行业对软件人才的需求日益增长,其需求常常是一般性软件、应用软件开发人员。这就给学生一个误导:应用强于理论(甚至只关注简单的应用),进而使学生忽视基础理论课程学习这种纯实用思维。这种纯实用思维取向将影响学生自主学习能力与逻辑思维能力的培养,降低学生学习其他专业课程的分析能力,进而降低其在工作中的拓展能力及竞争力。虽然我国高校软件专业毕业生逐年曾多,但是许多软件企业却反映招聘不到合适的人才。实际上,企业缺少的是有拓展能力、快速学习能力的高层次专业人员,这类专业人才必然要具有良好的数学素养。另外,软件工程专业学生本科毕业后,有相当比例的学生考虑继续深造,要用到“概率论与数理统计”学科的一些基本理论和方法去研究、解决相关科学问题。根据以上的分析,结合吉首大学(以下简称“我校”)提出的人才培养目标,“概率论与数理统计”课程应定位为数学思维+软件实现工具:既要求学生掌握“概率论与数理统计”的基本概念、思维模式、计算方法,培养学生的数学素养,又要求学生学以致用,培养学生对其在软件行业里的实际作用的认知和兴趣。

2.教学资源的优化整合

如果没有教学资源将会使教学改革成为无本之木,无水之源。因而,优化整合教学资源是实施教学改革的又一项重要的基础工作。目前,国内教学资源主要关注该学科体系的完整性与论证的严密性,[2]这对软件专业的学生而言,在学习时往往看不到该学科在软件工程中的应用,既不能与学科很好地结合起来加深理解,也不能调动学生的学习积极性。[3]而国外教材的特点是与计算机专业的联系更加紧密、例子更加丰富。[1,4]因此,需首先成立教学研究小组,将“概率论与数理统计”教学内容分为几个部分,每部分由一个小组成员负责教学建设及深入研究,整合国内外优秀教材,提炼教学内容:在选用国内经典教材的基础上,指定国外优秀教材作为参考书。[5]在整体分析后,适当增加概率论与数理统计在计算机科学中的应用内容,将之与理论知识结合介绍给学生,既有助于学生理解,又为后续的专业课程的学习奠定基础。[6]而对部分理论知识,或删节或安排学生自学。例如,集合论基础部分、古典概率算法等章节应当删除,随机变量复杂函数概率分布的理论推证适合学生自学;其次,建设网络课程,充分利用现代网络技术,为学生提供丰富多彩的网上教学资源,方便学生自主学习和师生间的交互,有利于指导学生进行个性化学习和协同学习,为实现精讲多练的教学目标奠定资源基础。

二、“概率论与数理统计”课程教学方式的改革