欢迎来到速发表网!

关于我们 登录/注册 购物车(0)

期刊 科普 SCI期刊 投稿技巧 学术 出书

首页 > 优秀范文 > 初中数学思想方法的重要性

初中数学思想方法的重要性样例十一篇

时间:2023-09-05 09:29:44

序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇初中数学思想方法的重要性范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!

初中数学思想方法的重要性

篇1

长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程中的数学思想方法的现象非常普遍,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者,特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识[1]。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。

二、初中数学思想方法的主要内容

初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。

(一)转化的思想方法

转化的思想方法就是人们将需要解决的问题,通过某种转化手段,归结为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。初中数学处处都体现出转化的思想方法。如化繁为简、化难为易,化未知为已知等,它是解决问题的一种最基本的思想方法。具体说来,代数式中加法与减法的转化,乘法与除法的转化,换元法解方程,几何中添加辅助线等等,都体现出转化的思想方法。

(二)数形结合的思想方法

数学是研究现实世界空间形式和数量关系的科学,因而研究总是围绕着数与形进行的。“数”就是代数式、函数、不等式等表达式,“形”就是图形、图象、曲线等。数形结合就是抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。“数无形时不直观,形无数时难入微。”数形结合是研究数学问题的重要思想方法[2]。初中数学中,通过数轴,将数与点对应,通过直角坐标系,将函数与图象对应,用数形结合的思想方法学习了相反数的概念、绝对值的概念,有理数大小比较的法则,研究了函数的性质等,通过形象思维过渡到抽象思维,大大减轻了学习的难度。

(三)分类讨论的思想方法

分类讨论的思想方法就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法。分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,解决数学问题。初中数学从整体上看分为代数、几何两大类,采用不同方法进行研究,就是分类思想的体现。具体来说,实数的分类,方程的分类、三角形的分类,函数的分类等,都是分类思想的具体体现。

三、初中数学思想方法的教学规律

数学思想方法蕴含于数学知识之中,又相对超脱于某一个具体的数学知识之外。数学思想方法的教学比单纯的数学知识教学困难得多。因为数学思想方法是具体数学知识的本质和内在联系的反映,具有一定的抽象性和概括性,它强调的是一种意识和观念。对于初中学生来说,这个年龄段正是由形象思维向抽象的逻辑思维过渡的阶段,虽然初步具有了简单的逻辑思维能力,但是还缺乏主动性和能动性。因此,在数学教学活动中,必须注意数学思想方法的教学规律。

(一)深入钻研教材,将数学思想方法化隐为显

首先,教师在备课时,要从数学思想方法的高度深入钻研教材,数学思想方法既是数学教学设计的核心,同时又是数学教材组织的基础和起点。通过对概念、公式、定理的研究,对例题、练习的探讨,挖掘有关的数学思想方法,了然于胸,将它们由深层次的潜形态转变为显形态,由对它们的朦胧感受转变为明晰、理解和掌握。一方面要明确在每一个具体的数学知识的教学中可以进行哪些思想方法的教学;另一方面,又要明确每一个数学思想方法,可以在哪些知识点中进行渗透。只有在这种前提下,才能加强针对性,有意识地引导学生领悟数学思想方法。

(二)学生主动参与教学,循序渐进形成数学思想方法课堂教学活动中,倡导学生主动参与,重视知识形成的过程,在过程中渗透数学思想方法。

概念教学中,不要简单地给出定义,要尽可能完整地再现形成定义之前的分析、综合、比较和概括等思维过程,揭示隐藏其中的思想方法。

定理公式教学中,不要过早地给出结论。要引导学生亲自体验结论的探索、发现和推导过程,弄清每个结论的因果关系,体会其中的思想方法。

篇2

自实施课程改革以来,数学教材很多教学内容都安排数学活动帮助学生经历“数学化”过程,这是新课程标准基本理念的体现。当然,学生的数学活动应当是有层次、逐渐深入的,只有使学生在整个数学活动过程中对数学概念、数学规律的实质产生感悟、反省与建构,才能实现真正意义上的“数学化”过程。但现实教学中教师对学情的分析可能只停留在对学生活动程序、方法掌握情况上,很少能把数学策略方法的有效运用与数学活动经验进行分析与联结。

一、运用分类比较,提高学生数学感知能力

分类通常指一种揭示概念外延的逻辑方法,以比较为基础,按照事物间性质的异同,将相同性质对象归入一类,不同性质对象归入不同类别的过程。分类比较活动在数学课堂上经常运用,特别在学生结合旧知进行自主探究时,它能有效架起通向新知学习的桥梁。

针对我班实际情况,本节课教学中我设计了如下一道题:

在等腰ABC中,已知∠A=50°,请求出∠B的度数?

引导学生进行思考讨论……

生:答案是50°或者65°。

师:你能说说你是怎么思考的吗?

生:当∠A是顶角的时候,那么∠B就是底角,所以∠B的度数就是65°.当∠A是底角的时候,∠B是50°。

师:还有没有其他可能?

同学们认真思考。

生:还有一种可能,当∠A是底角的时候,∠B可能是顶角也可能是底角,所以当∠A是底角的时候,∠B是50°或者80°。

学生经历了分类讨论,加深了对分类讨论思想的认识。

对教师来说,这算不上一次得意的教学设计,但学生的反馈却可以让我们再次深刻体会到他们是如何充分利用数学思想方法,为学生观察、分类、比较逐步积累活动经验,提供理论支撑。

二、活用数形结合,使复杂问题简单化

数和形是数学研究的两个基本对象,“数”构成数学的抽象化符号语言,“形”构成数学的直观化图形语言。中学数学课堂上,我们常常把“数”和“形”结合起来,使数量描述与空间直观形象和谐统一,让学生结合数量关系形象地勾勒出相应的图形,从而使学生在这一积极的探究活动中积累基本活动经验,使问题巧妙地解决。

如2008年南京市的一道中考题:一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.

根据图像进行以下探究:

信息读取:

(1)甲、乙两地之间的距离为?摇?摇 ?摇?摇km;

(2)请解释图中点B的实际意义;

图像理解:

(3)求慢车和快车的速度;

(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;

学生看不懂题目,图形看不懂。与我设置此类问题的初衷基本吻合,一是对这类题目“怕”,对文字的阅读能力偏弱;二是对图形阅读不了,不能将图形与文字结合起来理解。

师:你是如何理解图中点的实际意义的?

生:我想应该是快车已经到了乙地了。

很显然,他没有很好地阅读题目,导致理解产生偏差。

生:横轴表示的是两车行驶的时间,纵轴表示的是快车和慢车之间的距离。

师:看点,时间是4小时,对应的纵轴是0,快车和慢车行驶了4小时后,两车之间的距离应该是0。

师:什么原因造成了你们理解的错误?

……

通过这样的引导,学生仔细阅读文字材料与图形,再配以线段图辅助解题,学生对这题的理解明显清晰了很多,很容易得出第三问的解答,为后面几问的解答做了铺垫。有了例题的铺垫,学生的阅读信心得到了提升,将图形与文字结合起来理解。

“数形结合”是初中阶段一个重要的数学思想方法,结合图形有助于提高解决问题的能力。

中学生的数学活动经验是在数学活动中积累,在学生充分经历数学活动过程中,常常伴随着多样数学思想方法,通过这些数学思想方法的有效运用,可以帮助学生感受知识的形成过程,从而获取具有数学本质的数学活动经验。在教学中开展一切有现实意义的数学活动,运用多样数学思想方法,有效促进学生提升数学学习感知力和兴趣,为学生学好数学打下坚实的基础。

篇3

一、初中数学教学中化归思想概述

在实际教学中,初中数学教学难度较大,学生的学习积极性、学习态度直接影响其接受教育的效果。初中数学教学中化归思想的应用探索,更多的是为了完善数学教学中存在的问题,提高学生学习数学的积极性。初中数学教学中化归思想,即通过观察、推测、寻找与熟悉知识的连接点,将不熟悉的问题转化为熟悉的问题,从而找到解决问题的简易方法,进而达到解决问题的目的。在初中数学教学中,数学教师应有效地向学生渗透化归思想,引导学生应用化归思想解决数学问题,这对提高学生解决数学问题的能力具有极大的促进作用。因此,初中数学教学中化归思想的应用探索非常重要。

二、初中数学教学中化归思想的应用

1.化多元为一元

在初中数学教学中,化多元为一元是化归思想应用的重要内容之一。对于数学方程或者方程组的解决而言,虽然解法可能存在不同,但是万变不离其宗。在求解方程或者方程组的时候,可应用化归思想确定某些变量的值或者范围,然后依据题目中变量之间的关系,简化变量的个数,尽量将其转化为同一变量的形式,将求解的方程化归为简单的方程,从而解出方程。化多元为一元,在快速求解方程或者方程组时非常有效。

2.化整体为部分

在初中数学教学中,化整体为部分也是化归思想应用中不可缺少的一部分。数学教师在具体的教学环节,应结合实际的教学目标,引导学生明确化整体为部分这种思想方法的重要性。化整体为部分,是一种重要的化繁为简的解题策略,在解决数学问题的过程中,可以有效地协调题目中整体与部分的关系,促使学生联想到熟悉问题的本质特征,进而将部分换成一个整体元素,顺利地解答出题目。因此,在解决数学问题的过程中,数学教师应积极地培养学生化整体为部分的意识。

3.化数为形

为了有效地提高学生解决数学问题的能力,在初中数学教学中化归思想的应用探索中,教师应重视化数为形这种思想方法的渗透。通过化数为形思想方法的应用,引导学生发现事物之间的联系。在解决代数问题的时候,数学教师应积极地引导学生应用化数为形的方法,恰当地帮助学生将代数问题转化为熟悉的问题或者简单的几何问题,以降低数学问题的难度,培养学生解决数学问题的意识和能力。

4.其他几种形式

教学实践活动表明,初中数学教学中化归思想的应用,除了以上三种形式,还包括其他几种形式。在初中数学中,化数为形的题型很多,常见的一次函数、二次函数、反比例函数等题型,都是数学教师必须关注的。化一般为特殊的题型,大多是以选择填空为主;化无理为有理数题型,多数是分子、分母都为无理数时需要转化为有理数的情况下应用;化动为静的方法,多被用于求动点的问题中。因此,在实际教学中,数学教师要全面引导学生认识化归思想的重要性,并逐渐将其应用到解决问题的过程中,有利于提高学生解决数学问题的能力。

综上所述,在初中数学教学中,为了进一步提高教学效率,数学教师应结合实际教学情况,积极探索初中数学教学中化归思想的应用方式,并逐渐完善数学教学方法及模式,激发学生参与数学学习活动的积极性,促使学生可以更加主动地学习数学知识,为其以后的学习奠定良好的基础。因此,在实际教学中,数学教师要根据学生的认知特点,循序渐进地渗透化归思想,培养学生应用化归思想解决问题的意识,提高学生学习数学的效率。

参考文献:

篇4

初中数学比较重视基本知识和基本技能的培养,对于思想方法教学,不是特别重视和关注. 随着新课改的不断进行,思想方法教学也越来越受到重视,渐渐成为初中数学重要的教学内容. 从函数角度来说,从初二学习一次函数开始到初三复习教学中的压轴函数综合性问题等,无不蕴涵着数学思想. 初中生对思想方法的认知,基本停留在浅显的地步,以分类讨论为例,大多是比较明显的、常态的、习惯的讨论,而对陌生问题的讨论,切入点存在分析不足和认知不够,笔者认为,对数学思想的教学应立足两点:一是对中考常见问题板块进行典型数学思想的学习和探究,增长学生在常态问题上的熟悉程度;二是利用数学思想请学生对函数问题进行思考、辨析,如何将数学思想牢牢地驻扎自己的脑海,以提高学生运用数学思想的深刻度. 下面来看看中考应试中的常见思想.

数形结合思想

数形结合思想一直是初中数学压轴题考查的数学思想方法之一,以形辅数,即用图形的方法研究函数问题,是数形结合思想优秀的体现. 在初中复习教学中,函数教学的图形一直是初中生函数复习教学的重点、难点,这主要基于两方面的原因,其一是如何从函数图象中迅速找到突破口,将问题转化为能利用数形结合思想的思路和方法;其二是函数往往含有变量,是初中生应试最惧怕的考点与题型. 笔者的建议是,对函数图象的分析要充分,要将函数充分转换为图象语言,这值得教师教学研究和关注.

研究与反思

上述案例告诉我们,数学教学的研究要立足思想方法,不能以题论题. 中考试题的考查都是将数学思想方法运用到具体问题中的一种形态,教师要将分析、研究的过程在课堂中给予学生讲解和展示,才能提高数学教学的有效性,为此,有两方面的认知:

篇5

【中图分类号】G633.6

初中教学相对于小学阶段的数学教学来说,无论是内容上还是在难度上都有所提升,在对知识的理解和学习体系上更有所关联和完善。在初中阶段学生对于数学的学习不仅要求学生需要掌握最基础的数学概念,还需要学生了解数学中相应的重点、难点问题。随着教育事业的不断发展,在数学的教学过程中强调数学思想的培养显得尤为重要。对于数学思想的培养能够帮助学生更好的理解数学的基础知识,有助于推动学生数学思想的形成,更有利于学生将课本上的知识转变为自己的,以便掌握数学知识的整体结构和体系,更好的把数学知识运用到生活中。

1、初中数学教学中培养学生数学思想的重要性

数学思想是分析、处理和解决数学问题的根本想法,是对数学知识的理论认识,由于学生的认知能力比较有限,只能够将部分重要的数学思想落实到数学教学中。所以培养学生的数学思想具有非常重要的作用。

1.1 初中数学的特点

初中数学的知识体系相对于小学数学来说更加完善和深入,知识点也更加具有思维逻辑性。在教学的内容上,知识点更加多,数学方程式更加复杂,数学理论知识也更加困难,所以初中数学教师在教学的过程中不断拓展综合知识。这首先需要教师对于初中数学发展动向有一定的把握,结合课本知识做出一定的延伸;在一个就是需要学生在掌握课本的知识以后,在对老师延伸的知识作进一步学习和消化。

1.2 初中数学教学中加强数学思想的重要性

对于培养学生数学思想来说有利于学生对知R点的理解和掌握,还有利于培养学生的思维能力和空间想象力,对于更好的把数学知识运用到生活中有着重要的作用和意义。第一,数学思想的培养有利于初中数学教学的展开。教师在教学的过程中不断培养学生的数学思想,能够帮助他们积极的参与到课堂的学习活动中。在初中数学的教学过程中,需要教师考虑基础性的知识,对于数学思想的运用要贯穿于整个教学过程。第二,数学思想能够培养学生主动学习能力。学生学习的主动性能够不断提高学生的学习效率。数学思想在教学过程中的运用不仅需要教师展开相应的教学活动,还需要教师把数学思想贯穿于对基础性知识的讲解中,并让学生形成一定的思维模式,确保数学的自主学习。第三,还有利于解决生活中存在的实际问题。对于初中数学知识来说一般都来自生活,虽然多了一些逻辑性,但是解决生活中存在的数学问题还是非常有效的,学生掌握了数学思想就能够很轻松的解决生活中的实际问题。

2、培养学生数学思想的有效方法

2.1 在对问题的解决过程中不断培养数学思想

在对初中数学问题的解决过程中,首先需要教师采取适当的技巧,让学生在大脑中形成数学思想,运用这些数学思想不断形成独立的思考问题的能力,然后在解题的过程中运用科学的解题方法,这样问题就很容易解出。但是教师在教学的过程中还存在一种情况,比如一些学生虽然掌握了一定的解题方法和解题能力,但是对于一些题目仍然无法解出来,老师如果稍微点拨,问题就很容易解答出来。对于这种情况首先是学生脑海中的知识比较混乱,在解题的过程中不能够灵活的运用;在一个是对于数学知识的不能够深入的理解,所以在解题的过程中不能够激发出相应的结构模式。教师针对这个问题,在教学过程中加入一定的数学思想,这样可以使学生在处理问题上灵活多变,更好的处理数学实际问题。

2.2 在教学的过程中展现数学知识的再现过程

在新课改的要求下,学生是作为主体地位的。所以学生在学习知识时需要教师引导学生进行主动的学习,运用一种再创造的形式,对所学知识进行加工,这样就能够得到理想的学习效果。教师在教学的过程中,需要对学生进行引导,培养学生的探索能力和思维能力,这样通过自己的思维能力的理解,才能使知识更加根深蒂固。在这个过程中,数学思想将起到一定的辅助作用。

2.3 在教学的过程中体现思维的发展

学生、教师、数学家是数学思维活动最活跃的三者,三者之间存在一定的关系。主要体现在数学知识是数学家的思维,教师对数学知识进行总结,并通过自己总结的方法表达给学生,也就是教学活动。在这一过程中,对于学生来说是属于被动接受知识的过程,教师讲解多少知识,学生掌握多少。一般来说比较完善的数学教学包括五个过程,思维、发现、计算、转变思想和优化结构这五个过程。数学教学的过程就是不断发现知识,在教学的过程中加入数学思想,就能够降低教学的难度,学生在理解一些数学知识点上也更加容易。

2.4 理论知识与实际生活现象的结合

对于数学知识来说,与生活的联系非常密切,随着社会不断发展,这需要教师在教学的过程中,不断了解社会发展动向和生活存在的实际现象,通过社会的一些信息进行数学课堂知识的扩充,以更好的达到数学的教学过程。教师还需要引导学生观察生活中的变化,然后提出一些相应的问题,这些问题结合实验来进行解答出来;教师需要在课堂上对一些数学逻辑问题进行正确引导,以有利于学生进行解答数学学习中存在的问题。

结语

在初中数学教学过程中,加强对学生的数学思想的培养,对于学生来说,有利于理解和掌握数学知识,不断培养自己的思维能力、空间现象力;对于教师来说,有利于丰富教学过程,提高教学质量。

参考文献

[1] 黄家超;初中数学教学中如何渗透数学思想方法[J];教育教学论坛;2011年30期

篇6

把数学思想和方法作为初中数学的基础知识在大纲中明确提出来还是第一次,它要求我们在实施义务教育过程中,更要注重数学思想和方法的教学。数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的一种结果.它是数学中处理问题的基本观点,是对数学基础知识与基本方法本质的概括,是创造性地发展数学的指导方针。数学思想比一般说的数学概念具有更高的抽象概括水平,后者比前者更具体更丰富,而前者比后者更本质更深刻。数学方法是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式。以下笔者就初中数学教学渗透数学思想方法进行初略的探讨。

一、 数学思想与数学方法对初中数学的重要性

1.1帮助学生形成数学思维

事物体现于外在的面貌千差万别,内在却可能具有丰富的联系,甚至就是两个本质类似的事物。数学题库里的题目浩如烟海,学生能够做完的仅仅是其中非常小的一部分,然而,同样是完成相同数目的题目,有的学生就能够触类旁通,而有的学生则只对做过的题目有印象,换一种形式和面貌出现就解不出来,这种现象就是有没有形成数学思维造成的差别。数学思想往往意味着一种规律性,掌握了规律就等于在某种程度上掌握了事物的本质,学生一旦养成了一定的思维习惯,不仅是在做数学题和学习数学这门科目上,即使是在生活中的其他领域,也往往会具有较强的分析并解决问题的意识与能力,相比而言更具思想与主见,故而数学思维的形成与培养是一件使学生终生受益的事情。

1.2帮助学生构建知识体系

知识体系的构建有助于学生在头脑中形成比较清晰的印象,从而帮助学生对学科整体进行认识与把握,如果说知识体系像一张网的话,那么数学思想与数学方法就像是网中连接每个知识点的脉络,有了思想与方法的指引,学生就可以很好地把各个知识点融会起来,从而形成相对完善的初中数学的知识体系。目前虽然教材减少了一些知识内容,却在无形中加强了对数学方法及思想的要求。

二、数学思想方法的教学原理

数学思想方法是具有一定原理的,它可以表现出数学教学规律。因此,我们需要不断加强实践教学,坚持一定的原则才能使数学思想深入渗透到教学过程中。

2.1原理一――渗透性

在实际教学活动中,我们一般不会直接说明采用什么样的数学思想方法,主要通过设置教学情境,重点是让学生领悟其中的内涵,使这些数学思想方法起到潜移默化的作用。尽管数学思想方法与数学知识的学习是统一的,二者相互作用、相互影响,但是二者又不完全一致,数学思想方法尤其独特性,那就是渗透性,需要长时间不断积累才能收到效果。

2.2原理二――反复性

数学思想方法的掌握主要是从浅显到深层,从感性到理性,从个别到普遍。这是一个反复的过程,需要长期坚持。

每个个体都是不同的,数学思想方法和具体数学知识进行比较,二者的不同之处在于不是同时进行的。在数学教学中,应该对成绩比较差的学生给予更多的关注,给他们更多的时间去接受和理解。如果急于求成,就会导致学生的成绩严重分化。

2.3原理三――系统性

数学思想方法和具体的数学知识相似,都有一个完整的知识结构,它也有自己的整体功能。数学思想方法也是从低级到高级的,某一种数学思想只针对某一种数学教学方法,其中涉及的数学知识各成体系,这样才能更好地为学生服务,这也是数学思想中非常重要的原理。

三、初中数学教学中数学思想和数学思维的渗透

3.1抓住机会,及时引导

在数学教学的时候,紧紧把握数学思维和方法在数学课上的渗透机会,注重数学公式、概念以及法则的形成和发展的过程,使学生在学习的过程中开拓创新,在明白数学思想和方法的过程中,去解决实际的数学难题。在数学思想和方法相互渗透的时候,教师要充分发挥主导优势引导学生自己去发现解决问题的思维和方法在数学定理、数学概念以及数学法则等结论的论述中,教师发挥主导作用,开创有意的情景,给学生以直观的印象,使学生对数学结论有一目了然的感知。我们还可以把观察、类比、尝试等数学方法在这个结论产生的过程中,进行数学思想和方法的相互渗透。

3.2分段分层组织教学

第一,分阶段组织教学。这个阶段包括教学的孕育阶段和教学的形成阶段。在组织教学的孕育阶段,数学思想和知识的融合在于数学内容的内部结构。从数学教学的内容入手,可以由两条线索构成。所以,我们在平常的数学学习的时候要注重知识的累积,教师要引导学生积极探索数学知识中的数学思想和方法,在横向的感知中明白数学的内在美。

第二,分层次组织教学。在初中数学的教学的过程中,教师应该对教材有全面的理解,探索数学思想和方法,再对这些知识进行认真的考究。依据学生的认知水平、理解能力、知识掌握水平和年龄的差异来由简到难、由表及里的贯穿数学思想和方法。通过课堂授课、巩固复习和做课后习题等几个步骤来完成数学学习。所以说,数学思想和方法要在长时间的运用中逐渐形成。在数学学习的过程中,我们要注重数学旧知识的不断巩固,形成一个有机的体系。例如,在学习一次函数的时候,可以使用乘法公式进行类推的解决办法。

四、小结

数学思想、数学方法与数学知识三者密不可分,彼此相互联系也相互依存,初中数学教师应认识到这一问题,并在教学过程中着力把握,将数学思想与数学方法更好地渗透给学生,使学生对数学知识的学习达到事半功倍的效果,还能够使学生形成数学思维,进而满足素质教育提出的目标和要求。

参考文献:

篇7

一、初中数学思想方法教学的重要性

随着教育改革的不断深入,越来越多的教育工作者,特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。

二、初中数学思想方法的主要内容

初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。

(一)转化的思想方法

转化的思想方法就是人们将需要解决的问题,通过某种转化手段,归结为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。初中数学处处都体现出转化的思想方法。如化繁为简、化难为易,化未知为已知等,它是解决问题的一种最基本的思想方法。具体说来,代数式中加法与减法的转化,乘法与除法的转化,换元法解方程,几何中添加辅助线等等,都体现出转化的思想方法。

(二)数形结合的思想方法

数学是研究现实世界空间形式和数量关系的科学,因而研究总是围绕着数与形进行的。“数”就是代数式、函数、不等式等表达式,“形”就是图形、图象、曲线等。数形结合就是抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。“数无形时不直观,形无数时难入微。”数形结合是研究数学问题的重要思想方法。初中数学中通过数轴将数与点对应,通过直角坐标系将函数与图象对应,用数形结合的思想方法学习了相反数概念、绝对值概念,有理数大小比较的法则,研究了函数的性质等,通过形象思维过渡到抽象思维,大大减轻了学习的难度。

(三)分类讨论的思想方法

分类讨论的思想方法就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法。分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,解决数学问题。初中数学从整体上看分为代数、几何两大类,采用不同方法进行研究,就是分类思想的体现。具体来说,实数的分类,方程的分类、三角形的分类,函数的分类等,都是分类思想的具体体现。

(四)函数与方程的思想方法

函数思想是客观世界中事物运动变化,相互联系,相互制约的普遍规律在数学中的反映,它的本质是变量之间的对应。用变

化的观点,把所研究的数量关系,用函数的形式表示出来,然后用函数的性质进行研究,使问题获解。如果函数的形式是用解析式的方法表示出来的,那么就可以把函数解析式看作方程,通过解方程和对方程的研究,使问题得到解决,这就是方程的思想。在初中数学教材中,其它的思想方法都是隐藏在数学知识里,没有单独提出来,而函数与方程的思想方法,其内容和名称形式一致,单独作为章节系统学习。

三、初中数学思想方法的教学规律

(一)深入钻研教材,将数学思想方法化隐为显

首先,教师在备课时,要从数学思想方法的高度深入钻研教材,数学思想方法既是数学教学设计的核心,同时又是数学教材组织的基础和起点。通过对概念、公式、定理的研究,对例题、练习的探讨,挖掘有关的数学思想方法,了然于胸,将它们由深层次的潜形态转变为显形态,由对它们的朦胧感受转变为明晰、理解和掌握。

一方面要明确在每一个具体的数学知识的教学中可以进行哪些思想方法的教学;另一方面,又要明确每一个数学思想方法,可以在哪些知识点中进行渗透。只有在这种前提下,才能加强针对性,有意识地引导学生领悟数学思想方法。

(二)学生主动参与教学

循序渐进形成数学思想方法课堂教学活动中,倡导学生主动参与,重视知识形成的过程,在过程中渗透数学思想方法。

概念教学中,不要简单地给出定义,要尽可能完整地再现形成定义之前的分析、综合、比较和概括等思维过程,揭示隐藏其中的思想方法。定理公式教学中,不要过早地给出结论。要引导学生亲自体验结论的探索、发现和推导过程,弄清每个结论的因果关系,体会其中的思想方法。在掌握重点,突破难点的教学活动中,要反复向学生渗透数学思想方法。数学教学中的重点,往往就是需要有意识地揭示或运用数学思想方法之处;数学教材中的难点,往往与数学思想方法的更新交替、综合运用,或跳跃性大等有关。

因此,在教学活动中,要适度点拨或明确归纳出所涉及到的数学思想方法。在单元复习课堂上,要画龙点晴强调数学思想方法,并且可以进一步对经常用到的某种数学思想方法进行强化,对它的名称、内容、规律、应用等进行总结概括,使学生逐步掌握它的精神实质。

篇8

【中图分类号】G63.6 【文献标识码】A 【文章编号】2095-3089(2015)20-0-01

教育改革的深入,数学思想和数学方法越来越受到人们的重视,初中数学教学如何渗透数学思想和数学方法,让学生了解数学方法和数学思想的含义,认识数学思想和方法的重要性,是每个初中数学教师值得研究的问题,教师要完善自身的数学素养,深入研究教材,创新教学模式,激发学生数学学习兴趣,以课堂教学为载体,使学生逐步掌握数学思想和方法,提高数学教学质量。

一、数学思想和方法的作用

数学思想是对数学规律的理性认识,包括数形结合思想,分类化归思想等,数形结合思想是把抽象的数学数量关系与直观的几何图形关系结合起来,把抽象思维和形象思维的结合起来,使抽象的问题具体化。分类思想是对数学概念进行分类、求解的一种思维方法。数学方法是对数学思想的具体反映,是解决数学问题的程序和过程,初中数学思想和数学方法没有严格的界限,二者相互蕴含,相辅相成,数学思想是数学的核心,数学方法的运用受数学思想的指导,数学方法是数学思想实施的具体手段,是具体的数学行为,在课堂教学中,教师要有意识地引导学生认识数学思想和方法。数学思想是灵魂,数学方法是解决问题的关键,通过数学学习,形成数学素养,掌握数学思维方法,教师要注重学生数学思想方法的训练,用数学思想和方法解决生活中的问题,以提高学生的综合素质。数学思想是学生发展数学思维能力、获得数学知识的指导思想,也是进行教学设计、提高教学质量的指导思想,数学思想方法在学生认知过程中发挥着巨大的作用。

二、深挖教材,渗透数学思想和方法

教师要研究教材,熟练运用教材,在传授数学知识的同时,提炼数学思想和数学方法,新教材摒弃了传统教材枯燥的内容,增加了丰富的图片,真实的数据,强调数学与生活的联系,加入了数学史的知识,依据学生的知识基础,为学生提供了探究的材料,有利于学生构建合理的知识结构,概括数学思想方法,教学中,教师要注意提炼和概括数学思想方法,让加深学生的印象。

例如,方程思想是建立方程,解决实际问题的思想方法,是一种重要的代数思想方法,应用十分广泛,是数学大厦的基石,教材中多次出现方程思想,求函数解析式,列方程解应用题,利用根与系数关系求字母系数的值等等,教师在教学时,要有意识的指导学生寻找等量关系,建立方程。

《利用待定系数法确定二次函数解析式》教学,教师启发学生求出各项系数,确定解析式,启发学生利用方程思想解决问题,帮助学生寻找三个等量关系,列出方程组。让学生知其然,也要知其所以然,渗透与方程思想有关的其他数学思想,如函数思想、化归思想、分类思想等,拨亮一盏灯,照亮一大片。

教师要把握契机,重视数学知识的形成过程,激发学生思维,发展创新意识,例如,数形结合是根据题设和结论之间的联系,把数学问题数量关系和几何图形结合起来,分析数学问题的数量关系和几何意义,形成探求解决数学问题的思路方法,联系学生的生活实际,选择他们身边熟悉的事物,让学生体验数学价值,只有这样学生才会产生对数学的亲切感,学会用科学的眼光观察生活,用数学的观点思考生活,在日常生活中,数形结合随处可见,教师利用学生的生活经验,将数形结合的实例,运用到数学教学中,在课堂上渗透数形结合思想,提高学生用数形结合思想解决实际问题的能力。用数形结合的思想解决问题,找到数和形的恰当契合点,用数字解决问题缺乏直观性,用图形解决问题缺乏严密性,将数和形有机结合起来,优势互补,收到良好的教学效果。

三、创设情境,渗透数学思想方法

教师应注重将数学思想方法运用于实际问题中,创设生动的情景,让学生在情境中发现问题,运用数学思想方法解决实际问题,感性认识升华到理性认识,例如,二次函数的教学,教师创设生活情境,分小组合作,把函数知识应用于生活实际,帮助学生形成函数思想,例如,某超市经营的一种商品,成本价格是每件20元,若按每件25元销售,一个月能售出300件,销售价每涨1元,月销售量就减少50件,当销售价为每件28元时,计算销售量和月利润。教师提出问题让学生分组讨论,1.商品的月利润与进价、售价、销售量之间存在怎样的关系?2.如果不改变售价,每件商品利润是多少?月利润是多少?3.如果每件商品涨x元,每件商品的利润是多少?月利润是多少?学生对问题初步了解的基础上,分小组合作探究,通过讨论,找到解决实际问题的方法,激发探究问题的主动性。教师在教学中,创设和谐的课堂气氛,学生在轻松的氛围中学习,培养学生的数学思想。

总之,新课程标准要求学生了解、理解数学思想和方法,教师在教学中加强数学思想方法的渗透,让学生在学习数学知识同时,形成数学思想,帮助学生运用数学思想和方法解决生活中数学问题,丰富思维,提高创新能力。

参考文献

篇9

随着新一轮课程改革的开展与推进,人们越来越重视数学思想方法的渗透. 那么,在初中数学教学中有哪些思想方法需要我们去重视呢?

1.1数学方法. 顾名思义,这一类的思想方法与数学内容有着密切的关系,也可以认为是离开了数学知识就谈不上这些方法的运用. 比如解方程中常常用到的配方法,其是通过将一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其经典运用是一元二次方程求根公式的得出;再如换元法、消元法,前者是指把方程中的某个因式看成一个整体,然后用另一个变量去代替它,从而使问题得到解决. 后者是指通过加减、代入等方法,使得方程中的未知数变少的方法. 在复杂方程中运用这些方法可以化难为易。

1.2普遍适用性的科学方法. 例如我们数学中常用的归纳法,就有完全归纳法和不完全归纳法两种,数学上的很多规律其实最初都来自于不完全归纳法,因此在探究类的知识发生过程中,都可以用不完全归纳法来进行一些规律的猜想。 再如类比、反证等方法,也是初中数学常用的方法,运用这些方法的最大好处是,可以让学生领略到在初中数学中进行逻辑推理的力量与美感。根据笔者的不完全调查,学生在进行推理后如果能够成功地解决一个数学难题,其心情是十分喜悦的,而最大的感受就是通过一环套一环的推理,能够顺利地由已知抵达未知。

1.3就是我们常说的数学思想. 我国当代数学教育专家郑毓信、张奠宙等人特别注重数学思想在初中教学中的渗透,多次著文要加强数学思想方法的教学。 众所周知,数学思想与数学哲学有着密不可分的关系,很多数学家本身也是哲学家。因此,学好数学思想可以有效地培养哲学意识,从而让学生变得更为聪明。

例如典型的建模思想,其是用数学的符号和语言,将遇到的问题表达成数学表达式,于是就建成了一个数学模型,再通过对模型的分析与计算得到相应的结果,并用结果来解释实际问题,并接受实际的检验。一旦学生熟悉了这种数学思想并能熟练运用,将是初中数学教学的一个重大成功。

再如化归思想,其被认为是一种最基本的思维策略,也是一种非常基础、非常有效的数学思维方式。它是指在分析、解决数学问题时,通过思维的加工及相应的处理方法,将问题变换、转化为相对简单的问题,即哲学中以简驭繁的道理。

二、初中数学教学中思想方法的渗透方法思考

在初中数学教学中,思想方法的渗透一般可以分为两种形式:一是显性的教学方法,即向学生明确说明方法的名称,以让学生熟悉这些方法,并在以后的相关知识学习中能够熟练运用。这一思路一般运用在简单的数学思想方法中;另一个是隐性的教学方法,即在教学中只使用这种方法,但不向学生明确说明方法的名称,在后面知识的学习中有可能遇到,但总不以方法本身为目的,重点始终集中在某一个问题的解决上。

在笔者看来,对于今天初中学生的身心发展特点而言,更多有价值的数学思想方法以渗透的方式进行教学是比较恰当的选择. 作出这一判断的理由在于,十四、十五岁的初中生的智力发展落后于身体发育,还处在由形象思维向抽象思维过渡的阶段,因此相对比较抽象的数学思想方法一般并不容易从字面上给予理解,只能在运用中通过直觉思维建立一种类似于默会知识的能力。

那具体渗透又该如何进行呢?笔者以为关键是要加强渗透意识,即在备课时就要考虑要教授的某一知识中有哪些思想方法可以对学生进行渗透,在这种思路下,数学知识就会成为数学思想方法的一个载体,通过对数学知识的学习,让学生在收获知识的同时感受方法的运用和思想的熏陶。

比如,在初一数学教学之时,我们可以向学生阐述数学的研究对象是数与形,在此基础上就可以渗透“数形结合”的思想。在之后的数学教学中,一旦遇到有“数”又有“形”的知识点,就要让学生在“形”中寻找“数”,在“数”中构建“形”。例如三角形知识中有三角之和为180°的关系,在直角三角形中有特殊角的三角函数值的关系,在全等三角形中有等量的关系,在全等三角形证明的过程中有很多逻辑的关系等。

再如对学生归纳能力的培养,我们知道所谓归纳,是一种从特殊到一般的思想方法。以确定抛物线开口方向为例,如何知道二次项前的系数是正还是负,那就需要通过配方等方法来解决。确定了这一点之后,我们可用描点法在坐标上作出抛物线。一个方程及对应的图往往并不能得出相关的规律,只有不同形式是同一个结果之后,我们才可以通过不完全归纳得到抛物线的有关规律。如我们可以让学生画出下面四个方程的图象:y=x2;y=3x2-2;y=-x2;y=-2x2+1. 然后去归纳得出相应的规律,如二次项前的系数为正时开口向上,为负时开口向下等。 在这一过程中,教师根本不需要提出“归纳”的字眼,就是引领学生去分析、去归纳、去发现. 当学生熟悉了这种方法之后,在别的知识学习过程中,他们有可能说不出归纳这一词,但一定会运用这种方法。

渗透是初中数学教学的一种技术,甚至是艺术,因为在数学教学过程中,我们有时发现不说比说更难,但如果要说有时又会因为学生认知能力有限而说不清。因此,不说的能力更需要我们去着力培养。

篇10

数学思想方法是初中数学教学的重要组成部分,是比数学知识传授更为重要的教学内容。因此在新课程改革中被赋予了相当的重要性。

一、初中数学思想方法概述

1.数学方法

顾名思义,这一类的思想方法与数学内容有着密切的关系,也可以认为是离开了数学知识就谈不上这些方法的运用。比如解方程中常常用到的配方法,其是通过将一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其经典运用是一元二次方程求根公式的得出;再如换元法、消元法,前者是指把方程中的某个因式看成一个整体,然后用另一个变量去代替它,从而使问题得到解决。后者是指通过加减、代入等方法,使得方程中的未知数变少的方法。在复杂方程中运用这些方法可以化难为易。再如几何中的辅助线方法也是解决许多几何难题的灵丹妙药。

2.普遍适用性的科学方法

例如我们数学中常用的归纳法,就有完全归纳法和不完全归纳法两种,数学上的很多规律其实最初都来自于不完全归纳法,因此在探究类的知识发生过程中,都可以用不完全归纳法来进行一些规律的猜想。再如类比、反证等方法,也是初中数学常用的方法,运用这些方法的最大好处是,可以让学生领略到在初中数学中进行逻辑推理的力量与美感。根据笔者的不完全调查,学生在进行推理后如果能够成功地解决一个数学难题,其心情是十分喜悦的,而最大的感受就是通过一环套一环的推理,能够顺利地由已知抵达未知。

3.数学思想

我国当代数学教育专家郑毓信、张奠宙等人特别注重数学思想在初中教学中的渗透,多次著文要加强数学思想方法的教学。众所周知,数学思想与数学哲学有着密不可分的关系,很多数学家本身也是哲学家。因此,学好数学思想可以有效地培养哲学意识,从而让学生变得更为聪明。例如化归思想,其被认为是一种最基本的思维策略,也是一种非常基础、非常有效的数学思维方式。它是指在分析、解决数学问题时,通过思维的加工及相应的处理方法,将问题变换、转化为相对简单的问题,即哲学中以简驭繁的道理。

二、如何培养初中生的数学思想

在笔者看来,对于今天初中学生的身心发展特点而言,更多有价值的数学思想方法以渗透的方式进行教学是比较恰当的选择。作出这一判断的理由在于,十四、五岁的初中生的智力发展落后于身体发育,还处在由形象思维向抽象思维过渡的阶段,因此相对比较抽象的数学思想方法一般并不容易从字面上给予理解,只能在运用中通过直觉思维建立一种类似于默会知识的能力。

那具体渗透又该如何进行呢?笔者以为关键是要加强渗透意识,即在备课时就要考虑要教授的某一知识中有哪些思想方法可以对学生进行渗透,在这种思路下,数学知识就会成为数学思想方法的一个载体,通过对数学知识的学习,让学生在收获知识的同时感受方法的运用和思想的熏陶。比如,在初一数学教学之时,我们可以向学生阐述数学的研究对象是数与形,在此基础上就可以渗透“数形结合”的思想。在之后的数学教学中,一旦遇到有“数”又有“形”的知识点,就要让学生在“形”中寻找“数”,在“数”中构建“形”。例如三角形知识中有三角之和为180°的关系,在直角三角形中有特殊角的三角函数值的关系,在全等三角形中有等量的关系,在全等三角形证明的过程中有很多逻辑的关系等。

再如对学生归纳能力的培养,我们知道所谓归纳,是一种从特殊到一般的思想方法。以确定抛物线开口方向为例,如何知道二次项前的系数是正还是负,那就需要通过配方等方法来解决。确定了这一点之后,我们可用描点法在坐标上作出抛物线。一个方程及对应的图往往并不能得出相关的规律,只有不同形式是同一个结果之后,我们才可以通过不完全归纳得到抛物线的有关规律。如我们可以让学生画出下面四个方程的图像:y=x2;y=3x2-2;y=-x2;y=-2x2+1。然后去归纳得出相应的规律,如二次项前的系数为正时开口向上,为负时开口向下等。在这一过程中,教师根本不需要提出“归纳”的字眼,就是引领学生去分析、去归纳、去发现。当学生熟悉了这种方法之后,在别的知识学习过程中,他们有可能说不出归纳这一词,但一定会运用这种方法。

篇11

1.有助于学生形成良好的数学认知结构。数学思想方法蕴含在具体的数学知识和问题解决过程中,数学思想是桥梁也是纽带,联系着繁杂的数学知识点,帮助学生由点及面的形成清晰思维脉络。掌握了科学的数学思想方法就会在头脑中形成清晰的思路,这样当学生遇到问题时,就能从头脑中检索并提取相关的知识,找出解决问题的最佳方案。

2.有助于学生对数学知识的理解和记忆。数学思想方法是数学这门学科的基本原理,数学思想方法听起来抽象,但在具体应用过程中可以大大简化知识难度,以反证法为例,直接证明很难找到突破口,计算量也非常大,这时候可以反其道而行,通过反证法把问题解决,当学生掌握和理解了这些数学思想方法,再去学习数学知识的时候,特别容易理解和记忆。

3.有助于提高学生创新能力。数学思想方法能促进逻辑思维能力和形象思维能力的形成,而创造性思维又是建立在逻辑思维能力和形象思维能力之上的,因此加强数学思想方法的教学,能有效提高学生的创新能力。

二、数学思想在初中数学的教学策略

1.分散目标以渗透为主。从上面的总结可以看出,初中阶段涉及的数学思想方法非常多,教学中我们不可能一次都教會学生,需要通过精心的教学设计,将分散在数学知识当中的初中数学思想方法加以挖掘、整理,并适时的渗透在教学的各个环节。初中数学思想方法一般都是隐藏在数学知识中,而且其中有些方法在一道题目中可能互通,这时候教师要耐心、细致的去引导学生,要将分散在数学知识当中的初中思想方法加以挖掘、整理和提炼。学生初中数学思想方法的形成、发展不是一朝一夕的事情,需要长时间的学习和探索。因此,教师教学不能浅尝辄止而应该长期不懈地进行渗透。

2.以学生为本注意启发引导。新课改的一个显著特点就是在教学中要突出学生的主体性地位,因此在教学中教师要始终遵循这一理念,教师不要代替学生去思考和做决定,更不要把自己的思维意识强加给学生,而是需要教师引导学生感受和领悟蕴含其中的数学思想方法。初中阶段知识学习过程中涉及很多证明题,这类题目本身解答的方式非常多,比如平行,既可以通过同位角、内错角来证明,也可以通过同旁内角来完成,在一些全等、相似等的证明过程中教师要注意对学生以启发为主,时刻尊重学生的主体性意识,并注重数学思想方法的教学。可以鼓励学生们以小组为单位,自由讨论,共同分析。

3.借助现代教育技术推进方法教学。当今世界科学技术迅猛发展,尤其是计算机技术的发展,促使现代教育技术不断完善,对各学科的教学都产生了巨大的影响,当然初中数学思想方法教学也不例外,因此现代教育技术又被称为教育改革的突破口。在教学中,多媒体的应用为教师创设了一个良好的教学环境。尤其是在分析图像时,多媒体就显现出它的优越性,例如:通过动画和图形,应用平移、旋转、对称等,直观的展示了知识的发生,将传统静态的教学过程转变为动态的教学过程,更利于学生对新知识的理解。

以抛物线为例,作图的过程教师无需在黑板上反复擦拭,可以直接在软件里呈现,还可以可以改变一些数据,让学生直观的感受开口变化、象限位置、对称轴、定点、交点坐标的不同位置,让数和形结合为直观的动态图像,在这些图像中还可以使用不同的颜色来分别演示,将数与形的关系形象的展示给学生。如果教师能够这样教学,不仅学生对数形结合的思想方法理解才能深刻,而且碰到抛物线问题时,学生也会第一时间想到运用数形结合的思想方法。

三、结语

加强数学思想方法的渗透和教育,不仅可以促进学生学习能力的提升,还可以简化教师的工作量,让学生更加快速掌握知识教师必须转变观念,提高认识,促进学生对初中数学思想方法的了解和掌握。优化初中数学思想方法教学途径,带动学生灵活应用多种数学思想方法。

参考文献:

[1]王玉萍.数形结合思想在中学数学教学中的应用[J].当代教育实践与教学研究:电子刊,2017(02).

[2]林晓钦.浅谈初中数学思想方法在教学中的应用建议[J].小作家选刊,2017(10).