欢迎来到速发表网!

关于我们 登录/注册 购物车(0)

期刊 科普 SCI期刊 投稿技巧 学术 出书

首页 > 优秀范文 > 人工智能对教育的价值

人工智能对教育的价值样例十一篇

时间:2024-03-22 14:50:26

序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇人工智能对教育的价值范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!

人工智能对教育的价值

篇1

中图分类号:D631.43文献标识码:A

随着科学技术的发展,人工智能、大数据等新一代信息技术已经成为了人们关注的焦点,它不但给人们的工作生活带来快捷和便利,同时实现了良好的经济社会效益。把人工智能运用到公共管理当中,可以创新管理理念和管理模式,提高公共管理和社会治理的效能。

一、公共管理概述

公共管理是指以政府为核心的公共部门,把科学管理理念、功能、组织及手段应用到公共事务。公共管理的特征:其一,公共管理主要把实现公共利益当作主要目标,促使社会整体朝着更加良好的方向发展;其二,积极履行社会公共责任是公共管理重要职能;其三,公共管理能够结合实际发展需要,协调与控制各项公共事务,并不断创新管理方式和手段。因此,公共管理者需要在法律基础上主动实行公权力,科学合理地运用各项公共资源才能顺利实现最终管理目标。目前,社会对公共管理者的专业能力及综合素养要求越来越高,公众在整个过程中赋予公共管理者较多的期望和责任。此外,公共管理也具备技术掌控职能、社会协调职能及预测职能等,这些都是新时代对公共管理者提出的新要求,公共管理者必须全面掌握各方面技能,了解并掌握公众的实际需求与时代的发展趋势,才能成为一名符合时展的高素养公共管理者。

二、人工智能对公共管理的主要影响

(一)人工智能对公共管理的促进作用

公共管理指通过使用管理理论、技术及方法等知识,系统化、专业化地管理公共事业,不断优化公共资源分配,使公共事业为人民服务。传统公共管理模式在公共管理信息收集及资源管理配置方面,需耗费大量人力、物力及财力,要想提升公共管理水平,就要加大成本投入。因此,传统的管理模式已无法适应新时期公共事业管理需求。将人工智能运用到公共管理中,尤其在收集处理公共管理信息方面效果较为明显。其一,智能化管理系统能够全面提升收集信息的效率和质量;其二,人工智能管理模式更为精准有效。人工智能对于问题与数据分析更具针对性,分析结果更加科学合理,可以准确把握社会个体需求,做到管理精准化、个性化;其三,在公共管理中运用人工智能可以节约成本,并实现更加优化的管理目标,提升公共管理效益;其四,在公共管理中运用人工智能,使资源配置更加符合公众需求,采用人工智能化、科学化资源配置模式,能够使资源合理利用,发挥最大效能。

(二)人工智能给公共管理带来的风险

人工智能作为新兴信息技术,为公共管理事业带来了较多机遇,推动了公共管理事业的进步和发展。然而人工智能也给公共管理事业带来了相应的机遇和风险。人工智能给公共管理带来的机遇在于人工智能与计算机网络技术可以完整的保存海量数据,并挖掘与分析有价值的信息。网络安全性使得人工智能技术存在诸多未知性,人工智能是否能够确保信息资源安全,包括信息存储、授权使用,行为轨迹等管理问题[1]。信息安全对公共管理十分重要,要确保信息安全才能使公共事业管理中资源配置更加科学合理,最终实现提升公共管理效率。通过以往的案例证明,人工智能技术的自我安全性还不足,因此,要想使人工智能在公共管理事业中得到普及,就必须尽快解决这一问题。

三、人工智能在公共关系管理当中的具体运用

当前,人工智能快速发展,能给人们的工作生活带来巨大改变,帮助人们完成了许多高难度、高强度、复杂化的公共工作,推动智能社会发展。人工智能能够代替人开展脑力劳动工作,可以改变许多工作模式。但是人工智能属于辅助工具,人们要正确认识并科学合理地利用它,才能充分发挥它在公共管理中的真正价值。在人类社会不断进步与发展过程中,公共管理者必须不断学习、掌握先进技术,才能提升对人工智能的利用效率,把具有明确规则却复杂、耗时耗力的工作交给人工智能。

(一)公共事业方面。有人认为人工智能在生活和工作中不常用到,然而其已经运用到了人们生活的方方面面。2016年共享单车方便了出行,各年龄段的人安装了共享单车APP。共享单车具有明显优势,快捷便利、绿色环保,是人们出行的首选。共享单车利用人工智能平台,来科学的预测骑行的行程、路况及停放等,从而有效整合了天气、时间等各项变量工作,合理分析了其需求量和供给量,进一步提升了共享单车管理效率和效益。由此可见,人工智能已经越来越多地进入到了人们的日常生活当中,改变了人们的生活模式,使人们的生活朝着智能化方向发展。

(二)社会经济方面

运用人工智能能够把消费者具体需求反馈给企业,企业根据精准数据可以制定出更加优质的产品,提供高效服务[2]。当前电子支付是人们生活中重要的内容,人们出行不用带大量现金,运用支付宝或微信就能够进行支付。同样在电商物流整个过程中,分拣机器人就属于人工智能,其每天能够完成大于20万的工作量,很好地解决了困扰电商的物流问题,降低了人工成本,提高了工作效率。

(三)教育管理方面

人工智能运用包含教育管理,通过智能化学习系统和数据分析,教师能根据学生具体情况,如学习行为数据、知识点掌握等制定相应的个性化教育方案,提高了育人效果。从当前人工智能在教育领域运用情况看,在远程教育中同样获得了良好效果。在运用人工智能后,学生获得了个性化教育,创建了新的教学、内容研发和师资管理等形态。运用人工智能可以更准确、有针对性地协助教学,使日常教学效率得到大幅度提升。

四、人工智能在公共管理中的应用措施

(一)改变人才培养方式

人工智能技术的运用,还可以推动人才培养方式的变革和发展,能够创建健全的新型教育方式。首先,加强编程教育普及,设置人工智能方面的课程,把人工智能和其他学习的教育结合起来,健全人才培养方式。其次,组织多元化、多层面的人工智能科普活动,使社会大众能够进一步认识和了解人工智能。最后,加大人工智能基础设施方面的建设。

(二)重新构建组织形式

随着人工智能的出现和广泛运用,管理主体要结合自身特点,积极主动运用人工智能,不断发展完善管理结构。

在日后的工作当中,管理主体要和普通员工、智能机器有效合作,全面发挥潜在优势。另外,运用人工智能技术的时候,管理者要精心设计各种组织形式,才能确保信息传递真实、高效。

(三)创新工作模式

篇2

中国职业技术教育杂志征稿信息

《中国职业技术教育》杂志是由中华人民共和国教育部主管,教育部职业技术教育中心研究所、中国职业技术教育学会和高等教育出版社共同主办的一份综合性中文期刊,集政策指导性、学术理论性和应用服务于一身,是教育部指导全国职业教育工作的重要舆论工具,是服务各级各类职业教育机构的主要阵地。

中国职业技术教育投稿栏目:主要有职教要闻、专稿专访、综合管理方略、课程教材、教研与教学、师资队伍建设、研究与探讨、职业指导、职业培训、高等职业教育等栏目。

再给大家推荐职业教育范文:人工智能背景下职业教育变革及模式建构

董文娟1,黄尧2(1.天津大学教育学院,天津300350;2.北京师范大学国家职业教育研究院,北京100875)

摘要:顺应人工智能时代的浪潮,基于新兴技术的职业教育变革及新模式建构势在必行。该文从职业教育智慧化、经济发展、政策保障、信息化生态重构四个方面,剖析了人工智能时代职业教育变革的现实诉求,并进一步分析了当前职业教育外部环境及其自身发展的困境。人工智能背景下职业教育的变革体现出融合、创新、跨界、终身化的新特征。基于此,从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面,探究职业教育的变革路径及模式建构。最后探讨了职业教育模式变革还面临回归教育本质、规避技术弊端等挑战,并提出“适应—引领人工智能”的发展目标。

关键词:人工智能;职业教育变革;模式建构;智慧化

“人工智能的迅速发展将深刻改变人类社会生活、改变世界。特别是在移动互联网、超级计算等新理论、新技术及经济社会发展强烈需求的共同驱动下,人工智能发展呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。”[1]人工智能作为新一轮产业变革的核心驱动力,为我国供给侧结构性改革下的“新常态”经济发展注入新动能,使人们的思维模式和生活方式发生了深刻变革。近年来,国家高度重视与社会经济发展联系最为密切的职业教育,积极推进职业教育信息化,运用人工智能改革教学方法和人才培养模式,构建新型智能职教体系,提升信息技术引领职业教育创新发展的能力。

一、人工智能背景下职业教育变革的现实诉求

人工智能对传统教育理念产生了革命性冲击,职业教育结构不断调整,劳动力素质与市场需求的矛盾、学习方式与自我价值实现的矛盾等促使职业教育向智慧化、智能化发展。目前,我国处于教育信息化2.0、工业4.0的新时期,全球范围内新一轮的科技革命和产业变革正在加速进行。“一带一路”“中国制造2025”人工智能等重大国家战略的提出,及以新技术、新产业为特征的新兴经济模式要求教育领域,尤其是职业教育培养行业、产业急需的技术技能型、智慧型人才,具备更高的创新创业能力和跨界整合能力,促进智慧化发展,助力经济转型升级。

(一)职业教育智慧化诉求:职业教育信息化发展的必然选择

“智慧教育是以物联网,大数据等信息技术为依托,创造智慧教学环境,转换教育方法,内容与手段,注重教育网络化,个性化和智能化的一种教育新模式。”[2]智慧教育作为“一种由学校、区域或国家提供的高学习体验、高内容适配性和高教学效率的教育行为(系统)”,被视为教育信息化发展的高端形态[3]。因此,职业教育的智慧化并非简单的数字化,强调信息技术推动职业教育教学模式和方法的变革,改变思维模式,创建价值等方面共享的学习共同体,培养创新型、智慧型人才。

职业教育智慧化是职业教育信息化发展的必然选择。目前,我国的职业教育信息化水平正在稳步提高,投入持续增加,各种智能信息技术应用于教育教学、实习实训、测量评价等领域,并逐步成熟,正在努力打造一个信息化、智慧化的现代职业教育生态系统。新时期我国很多地区及职业院校积极提升现有信息化系统的智慧化水平,积极创建智慧校园、智慧社区等,逐步实现了组织管理的智慧化、资源环境的智慧化和服务评价的智慧化。

(二)经济发展诉求:人工智能时代的新兴经济需要高技能智慧型人才

人工智能时代职业教育运用移动互联网、大数据等新兴技术,与经济及其他部门跨界融合,不断创造新产品、新业务,推动职业教育模式创新,形成了以互联网为基础设施、人工智能为实现手段的经济发展新常态。人工智能时代是以现代科学技术为支撑的新时代,各行各业的运作发展和对知识技术的掌握要求达到了更高层面,相应的教育需求也有所提升,市场环境渴求勇于创新、个性化的高技能智慧型人才。职业教育要应对行业上升发展的劳动力需求问题,基于人工智能应用,提高技能培养层级,以适应新的社会劳务需求。现代企业生产依托互联网科技,与智能化设备直接联接,通过数据分析和应用,促进科技成果转化为生产力。劳动密集型企业已不适应现代行业、产业发展,需升级为网络智能型,与此同时,职业院校的课程模式、专业设置、实习实训、师资结构等也做出相应的调整和革新,既促进了职业教育的智慧化、智能化,又推动了产业升级和工业变革。

(三)政策保障:国家从宏观层面保障人工智能时代的职业教育发展

2016年是我国人工智能元年,2017年我国颁布了《新一代人工智能发展规划》,提出了“将发展人工智能放在国家战略层面进行系统谋划和布局”,这预示着我国人工智能时代的全面到来,为我国职业教育的发展提供了良好的宏观政策环境。人工智能给职业教育带来了符合时代精神的新内容,积极融合信息技术,整合职业教育资源,提升公共服务水平,影响和改变了原有的教育生态。紧密依托信息共享平台,突破时空限制,让学习者自我选择,更加人性化和智能化。我国很多职业院校已经开启了智慧校园的行动计划,一些大中城市也在积极制定实施智慧城市的发展规划,在良好的政策保障中提升智慧化水平。

(四)信息化生态重构诉求:人工智能时代的职业教育变革是对职业教育信息化生态系统的重构

“依据《2006-2020年国家信息化发展战略》,我国正在有序推进数字教育向智慧教育的跃迁升级和创新发展。”[4]在新兴智能信息技术的催促下,技术变革带来了职业教育系统的颠覆性创新改革,打破现有的条条框框,改革传统教育模式,再造教育业务新流程。在职业教育领域创新应用物联网、大数据、人工智能等先进技术,提升各科各门教育教学业务,打造各级各类智能实训部门、培训机构,覆盖贯通中高职院校,整合系统内外现有资源,推进智慧教育生态有序发展,为各类用户提供最适合、最智能的职业教育资源和服务,完成对职业教育信息化生态系统的重构。

二、当前职业教育发展的现实困境

人工智能对各行各业的影响具有革命性和颠覆性,可能带来新的发展机遇,也可能带来不确定性的挑战,比如可能会改变就业结构、影响政府管理、威胁经济安全等,还可能会冲击法律与社会伦理,影响社会稳定乃至全球治理。当前,人工智能与“大众创业、万众创新”浪潮席卷而来,职业院校既是人工智能应用的战场,又是培养技术创新型人才的“梦工厂”[5]。人工智能时代的职业教育信息化发展迅速,影响是广而深的,对职业教育外部环境及其本身都造成了极大的冲击。

(一)职业教育外部环境发展困境

“据联合国教科文组织预测,到2020年,人工智能将替代20亿个工作岗位”[6],那些技术含量低、重复性强的技能将被智能机器、数码设备所替代,工业机器人也将大面积应用。智能设备替代行业劳动力,能够降低劳动成本,且具有高效、易操作等竞争优势。传统职业教育培养模式很难适应未来行业、产业的发展需求,人工智能冲击职业教育就业岗位,撼动其所依附的岗位基础,对职业教育的生存与定位产生了威胁。因此,根据智能时代职业教育的岗位特征与需求,提升职业人才的知识结构和专业技能,是新形势下职业教育的发展方向。

(二)职业教育自身发展困境

近年来,人工智能在职业教育领域内的应用和提高是目前职业教育的发展趋势。我国重视职业教育信息化、智能化发展,各级各类职业院校在信息化基础设施建设、校园信息化管理等方面都有了显著提升,但信息技术与职业教育的深度融合仍不够紧密,表现出信息化管理效率低、科学决策水平低等现象。人工智能背景下职业教育自身发展的困境表现在:

1.课程与教学困境

职业院校新课程改革提倡构建智慧课堂,制定个性化学习计划,注重课堂实施效果。但目前的实际课程教学仍是以教师为中心,强调知识的灌输,重视统一性和计划性,与教育改革提倡的个性化教学相去甚远。教学方法、教学理念更新慢,很难激发学生的内在学习动力,创新性思维弱,使得个性化教育的无法实现。近年来,中央、省、市、县四级教育平台逐步建立起来,课程与教学的层级设计逐步完善,但在实施的过程中,各级平台之间存在沟通不畅等问题,各级资源内容不系统,不衔接,导致无序叠加和资源的重复浪费,“精品课程”等项目丰富了课程资源,但质量不高。在线课程与教学以传统的科目、章节为单元,构建系统性的在线教育内容,为用户提供专业化的知识选择,但由于受时间条件等限制,大多数受教育者习惯于碎片化学习,连贯性和整体性差,缺乏对课程与教学体系的系统性学习。

2.认知困境

随着人工智能时代的到来,许多职业院校将“未来教室”“智慧课堂”定位为未来发展方向,进行了多种尝试和改革,如MOOC混合教学、翻转课堂、多屏教学等,但“管理者和施教者对智慧教育的理解多停留在‘智慧课堂=多媒体+传统教学的层面’,教学观念和思维依然固化,并没有因为新技术的参与而得到实质改变”[7],缺乏对多媒体网络架构和智能学习平台的深层认识,更缺乏对管理评价和互动交流等模块的理解与掌握,虽投入大量人力财力采购了数量巨大、设备精良的多媒体设备和智能服务设备,但没有充分有效使用,大大限制了智慧教育的发展潜力。

3.用户困境

传统教学以群体教育为基本单元,教师和学习者作为学习共同体,在管理、学习的互动过程中形成强大的群体约束力,促进双方共同进步。在信息化教育时代,学习者自由掌握学习时间和进度,遇到问题可能无法及时解决并获得反馈,无法进行面对面交流,因此,基于人工智能网络化学习平台,学习者需要高自控力、高学习能力才能适应这种全新的学习方式。

4.评价困境

传统的评价方式多依靠经验和观察,智慧型评价则是基于学习过程的一种发展性评价,以采集到的学习数据为客观基础。在人工智能、数字信息化环境下教育效果的评价实际要受到很多因素的影响和局限,在信息技术与职业教育融合的过程之中,许多智能技术应用于教育教学实践,难以进行定性定量的智慧评价,如互动交流及深层次的学习评价等。

三、人工智能背景下职业教育变革的新特征

人工智能带来了思维模式的创新,改变了人们认识问题、思考和解决问题的方式,越来越多地依赖人与智能网络的协同创新。人工智能背景下的职业教育变革围绕经济社会发展大局,“主动服务国家重大发展战略,加大虚拟现实、云计算等新技术应用,体现校企合作、知行合一等职教特色,以应用促融合、以融合促创新、以创新促发展。”[8]人工智能背景下职业教育的变革必将加速推进职业教育的现代化、智能化进程,表现出了融合、创新、跨界和终身化的新特征。

(一)融合

人工智能技术科学应用于当前职业教育,在最短的时间内整合、重组大量的知识信息,形成科学的技术技能知识体系,为职业教育资源、企业资源、产业资源、社会资源等一切有可能联结的资源融合提供了可能。为促进职业教育的智慧化发展,在现有的合作模式、集团模式、产教融合模式等实体协作发展的基础上,建立智能互动的智慧教育供给平台、常态化智慧课堂和大数据化智慧教育生态系统,为我国新兴经济发展提供高技能、智慧型人才支撑。

(二)创新

信息化时代下“变”为创新立足之要点。创新时代最需要提升的就是创造智慧。“由知识的理解记忆,转向知识的迁移、应用并最终指向创造发明”[9],以提高学习者的学习能力和应用能力,提升其创新思维和智慧思维,不断开拓人类社会发展的高度和宽度。智能化、信息化的时代是创新不断的时代,是原有知识不断被更新、技术不断被升级的时代。人工智能促使社会化协同大规模发展,促进职业教育体系核心要素的重组与重构,创新生产关系,呈现出新的协作架构,开创了新的教育供给方式,增加了教育的选择性,推动了教育的民主化。学习者能够按照自己的价值观、兴趣与爱好等选择适合自己个性发展的学习方式和学习内容,促进学习者个性化、多样化发展,最终实现教育公平。

(三)跨界

智能科学与职业教育连接起来,搭建起两者沟通的桥梁,跨越了人工智能虚拟教育和线下实体教育的界限,实现了两者之间的融合。教育供给由竞争资源转变为协同合作,直线型的中心组织管理转向去中心化、泛化管理。通过大数据智能技术平台、远程教育平台等对职业教育资源进行整合共享,跨越教育边界,与市场、行业、企业以及职业教育培训机构对接,提供更加便捷的智慧化服务。

(四)终身化

人工智能时代职业教育的变革坚持“以人为本”的教育理念,满足学习者在任意时间、任意地点、以任意方式、任意步调终身学习的需求[10]。打破了地域和时间的限制,体现了教育的泛在化、个性化和终身化,与终身教育理念的发展目标不谋而合。人工智能时代社会经济发展加快,人们追求高层次自我价值的实现,充分体现出终身学习的必要性和紧迫性。目前,我国正在积极创建泛在学习环境,致力于构建终身化学习型社会,努力创造有利条件向全民提供终身教育与学习的机会。

四、人工智能背景下职业教育发展的模式建构

人工智能背景下职业教育的变革预示着全新思维意识形态、社会发展形态的变革,重塑职业教育可持续发展的新思维,重构信息时代职业教育的价值链和生态系统。智能化技术科学将现代职业教育内部各要素,以及内部要素与外部环境之间,通过虚拟技术和智能化手段互联贯通,突破传统教育价值的链状模式,使职业教育由传统模式走向“人工智能+职业教育”模式的建构。人工智能对职业教育课程、教学、评价、管理、教师发展等方面产生系统性影响,为职业教育提高教育质量和提升服务水平提供了技术支持和现实路径,解决不能兼顾职业教育规模和质量的矛盾问题。下面将从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面来探究职业教育的变革路径及模式建构。

(一)人工智能背景下职业教育的课程模式

人工智能时代的信息知识、科学技术正在以前所未有的速度增长、更新和迭代,呈现出了碎片化、多元化、创新性、社会性的特征。人工智能背景下职业教育的课程模式是为学习者提供按需可随时选择的知识储备智能模式,解决了传统职业院校课程教学的滞后性,呈现的是现代职业教育的前沿信息和内容。课程革命愈演愈烈,灵活多样的微课、慕课等形式层出不穷,在线课程将成为常态,信息传播媒介、知识获取方式等都发生了巨大改变,课程内容和结构的表现形态、呈现方式、实施及评价等也都进行了相应变革。智能化信息科学技术为课程的设计、架构、实施提供了快捷和便利,为学习者的个性化、终身化选择提供了多种渠道。人工智能背景下职业教育的课程模式的建构表现为:首先,线上线下融合的大规模开放课程融入现代职业教育,课程的表现形态和实施途径呈现出智能化、数字化、立体化的特征,成为学校常态课程的有机组成部分,为学习者提供了更多的可选择机会,使实施个性化课程成为可能。现代职业教育的课程内容强调学术性与生活性相互融合与转化,融入社会资源,立足于我国社会经济的新常态和学习者的全面发展,实现社会化协同发展,共赢共创;其次,课程实施的空间得以拓展,跨越了社会组织边界、职业院校边界,将从班级、年级、全校扩展到网络社区以及更大的空间。课程的整体结构从分散走向整合,以技术为媒介,形成跨学科、多学科整合的课程;最后,课程内容的组织、课程的实施逐步模块化、碎片化、移动化与泛在化,社会化分工更加精细,教师也将承担教学设计、技术开发、在线辅导等不同的角色。

(二)人工智能背景下职业教育的教学模式

人工智能时代将信息技术有效地融合于职业教育各学科的教学过程,从知识的传递转变为认知的建构,从注重讲授和内容,转变成重视学习过程[11],构建“以教师为主导,以学生为主体”的以数字化、智能化为特征的智慧教学模式,重视学生的主体地位,引导学生“自主、探究、合作”。人工智能背景下职业教育的教学模式的建构表现为:首先,人们的学习方法、认知方式和思维模式已经发生了巨大的转变。信息化教学使得信息技术已成为学习者认知的必要工具,认知方式也由“从技术中学”转型为“用技术学”。其次,信息化教学的重点从“面向内容设计”转变到“面向学习过程设计”,更加重视学习者发现问题、分析和解决问题能力的培养,关注学习者的学习过程,以及其获得学习活动的体验。同时,信息化教学要将课堂内的学习知识和课堂外的实践活动联结互动,按照学习者的个性化需求和认知方式自主选择学习内容。第三,智慧教学将成为课堂教学的新重点。日常教学工作形态不再是点线面的连接,而是呈现为智能化、立体化的教学空间,智慧课堂将会促进学习者的深度学习、交互学习和融合学习,智能备课、批阅以及个性化指导等也将成为教育者新的教学工作形式。从机械评价学习结果转变成适应性评价学习结果。第四,在线教学、整合技术的学科教学法将成为新的教学形态,促进教育均衡发展,实现跨学校、跨区域的流转。移动学习、远程协作等信息化教学模式,能够实现教师的“教”与学生的“学”的全面实时互动,最大限度地调动学习者的主观能动性,提升教学质量与人才培养质量。

(三)人工智能背景下职业教育的学习模式

智能系统和互联网络为学习者提供了丰富多元的学习资源和环境,推进了教育教学活动与学习环境的融合发展,人工智能背景下职业教育的学习模式也逐步建立起来,具体表现为:首先,智能时代的互联网络全面覆盖每一个人、每一个角落,活动空间由课堂内拓展到课堂外,学习与非正式学习正在互相补充、互相与融合,导致学习者的学习行为变化、学习方式的革新。其次,基于互联网出现了一批创新的学习方式,借助情景感知技术及智慧信息技术,进行真实过程体验的情境学习,促进学习者知识迁移运用的情境化和社会化。第三,借助互联网云技术和各种应用工具,学习者可根据自身学习需求,选择最优学习方式,也可利用数据分析技术,追踪记录学习路径和学习交互过程,随时随地获取个性化教学服务和量身定制的学习资源,拓宽了智慧教育视野。第四,各职业院校开始拓展校园智慧学习的时间和空间,以实现虚拟和现实相互结合的智慧校园育人环境。推进网络学习空间建设,加强教与学全过程的数据采集和分析,“引导各地各职业院校开发基于工作过程的虚拟仿真实训资源和个性化自主学习系统”[12],强化优质资源在学习环境中的实际应用。

(四)人工智能背景下职业教育的环境模式

智慧教育环境是以大数据、多媒体、云计算等智能信息技术为基础而构建的虚实融合、智能适应的均衡化生态系统。信息技术与职业教育的深度融合,为师生的全面发展提供了智慧化的成长环境,如智慧云平台、智慧校园。人工智能背景下职业教育的环境模式的建构表现为:首先,智慧教育环境将信息技术与职业教育服务结合、面对面教学和在线学习结合,形成数字化的、虚实结合的职业教育智能服务新模式。其次,智慧教育环境将促进各种智能化、数字化信息技术融入职业院校的各个业务范围和业务领域,与系统内的其他业务横向互联、纵向贯通,且信息能够适时生成和采集,全过程实现数字化与互联化。第三,智慧教育环境能够感知学习者所处的学习情境,理解学习者的行为与意图,满足学习者的个性化需求,提供多元化的适应服务和智能感知的信息服务。互联网应用基于智能数据分析,实现智能调节与自动监控,为学习者提供定制式的学习服务和个性化的学习环境。未来教室必将变成“虚拟+现实”的智慧课堂,在网络空间中参与线上课程、线下活动,实现线上线下互动交流。同时,智慧校园的创建和管理,能够对每个班级、学区进行动态管理,构建出一个以问题、任务为线索,学生实现自主学习的知识体系和促进师生互动、生生互动的智慧管理平台。到2020年,“90%以上的职业院校建成不低于《职业院校数字校园建设规范》要求的数字校园,各地普遍建立推进职业教育信息化持续健康发展的政策机制”[13],以学习者为中心的自主、泛在学习普遍开展,精准的智能服务能够满足职业教育的终身化定制。

(五)人工智能背景下职业教育的教师发展模式

人工智能背景下职业教育的变革对教师的专业发展、素质能力提出了新要求,改变了教师的能力结构和工作状态。教育信息化大背景下,互联网技术、多媒体手段的产生、智能化设备的使用极大提高了教师的专业发展和能力素养,以适应新课程改革与教育信息化的要求。人工智能背景下职业教育的教师发展模式的建构表现为:首先,新时代教师专业发展的内在要求和外在环境都要求教师能够认识、了解和应用互联网新技术工具,促使教师专业发展能力和素养的提升和丰富。其次,教师的专业发展要面向实际、情境化、网络化的教学问题,教师需要在多变的教育情境中综合运用核心教学技能,将信息技术知识、学科内容知识、教学法知识很好地融合并迁移运用。新时代的教师要学会掌握使用智能化设备和数字化网络资源,积极加强与其他专家、教师的合作,或远程工作,形成基于智慧教育技术的多元化的学习共同体。教师的工作状态由个体的单独工作转变为群体的共同协作,大大提升了教师的工作效率。第三,信息化背景下教师的教学理念要发生转变,由促进学生“接受学习”转变为“主动建构”,由“被动适应”转变为“主动参与”,越来越强调以学生为中心的过程体验,从了解信息技术转变为掌握智慧教育技术,保持学科知识,教学方法,核心技术的动态平衡,促进学生智慧学习的发生。第四,信息化教师要学会使用智能化教育技术,积极开发数字化学习资源,创设丰富多元的教学活动,鼓励学生掌握智能信息工具,学会探究和解决问题,发展提升学生的创新思维能力和信息化学习能力。教师的信息化教学能力和素养全面提升,信息技术应用能力实现常态化。

(六)人工智能背景下职业教育的评价模式

现代教育价值趋于多元,以互联网为基础的智能化信息技术使教育评价在评价依据、评价内容、评价主体等多个方面实现了全面转变。人工智能背景下职业教育的评价模式的建构表现为:首先,互联网信息技术应用于学习过程使得伴随式评价成为可能,更加关注学习者的个体差异和特点。强调过程评价和多元共同评价,更加客观全面,重视评价过程的诊断与改进功能,以促进学习者的个性化发展。其次,互联网、大数据、智能云技术的出现使得评价的技术和手段多样化、智能化,节省人力物力财力,提高了评价的科学性、针对性。第三,以大数据为基础的适应性评价因人而异,可获得及时反馈,可真实地测评学习者的认知结构、能力倾向和个性特征等,从知识领域扩展到技能领域、情感、态度与价值观,构建以学习者核心素养为导向的教育测量与评价体系,促进学习者发展。

(七)人工智能背景下职业教育的管理模式

智能化信息技术、云计算技术、大数据技术等能够促进大规模社会化协同,拓展教育资源与服务的共享性,提高教育管理、决策与评价的智慧性,因此,基于互联网的教育管理必将逐步走向“智慧管理”模式。人工智能背景下职业教育的管理模式的建构表现为:首先,互联网将家庭、学校、社区等紧密、方便地联系在一起,拓宽了家长和社会机构参与学校管理的渠道,各利益相关者可共同参与现代职业院校的学校管理,协作育人。其次,新时代的职业院校管理模式通过可视化界面进行智能化管理,业务数据几乎全部数字化,能有效降低信息管理系统的技术门槛,使管理工作更加轻松、高效。通过深度的数据挖掘与分析,能够实现个性化、精准资源信息的智能推荐和服务,为管理人员和决策者提供及时、全面、精准的数据支持,以提高决策的科学性。第三,通过互联网信息技术可以实现全方位、随时的远程监督与指导,从督导评估转变为实时评估,可以实现大规模的实时沟通与协作,促进社会化分工,促进职业院校内部重构管理业务流程,使管理智能化、网络化、专业化。

(八)人工智能背景下职业教育的组织模式

人工智能时代信息科学技术的蓬勃发展冲击着学校内部的组织结构向智能化、网络化的方向发展,各职业院校需要合理调整内部组织结构和资源分配,通过互联网加快信息流动等方式,提高各职业院校组织管理的效率和活力。人工智能背景下职业教育的组织模式的建构表现为:首先,当今时代人工智能的产生不可能替代学校教育,但可以改变学校教育的基本业务流程。人工智能推动了学校组织结构向网络化方向发展,教学与课程是提供信息数据的重要平台,学校组织则构成了教育大数据生态系统。其次,“互联网+职业教育”的跨界融合将打破学校的围墙的阻隔,互联网将学校组织与企业、科研院所等社会机构紧密联系起来,提供优质教育资源供给,共同承担知识的传授、传播、转化等功能,促进学校组织体系核心要素的重构。第三,建设“智慧校园”,实现线上线下融合的智慧校园育人环境,实施一体化校园网络认证,推动智能化教育资源共建共享,实现职业教育信息化建设的均衡发展。

五、人工智能背景下职业教育的模式变革面临的挑战及发展目标

人工智能将推进大数据、云技术等智能信息技术深层次融入职业教育课程与教学、组织与管理、评价与反馈等领域,形成社会化多元供给,为学习者提供多样化的参与方式、自主选择的学习形式和及时获得反馈的评价途径,有利于实现职业教育的共建、共享、共治。但其全面实现,还面临着诸多挑战。

(一)挑战

首先,职业教育的新模式建构需要充足的资金支持。各职业院校积极建构智慧校园,努力实现智慧化产学研环境,打造一体化智慧城市网络等核心技术的开发,都需要资金的根本保障。政府要给予资金政策保障并加强监管,资金管理部门要合理规划,合理利用,专款专用,落到实处。其次,职业教育的新模式建构的成果表现离不开学习者对技术的理解、掌握和应用。在实际实施过程中,教育工作者既要利用信息技术优势变革职业教育,也要避免技术中心主义倾向,“避免一味追赶技术新潮而不顾学生身心健康等,技术本身是一个祸福相依的辩证法。”[14]第三,“目前的教育实践中,仍未能充分实现人机合理分工和双边优势互补。人工智能终端系统擅长逻辑性、单调重复的工作,而人类则更适合情感性、创造性和社会性的工作。”[15]现阶段,信息化技术水平还有待提高,智能机器不能完全胜任知识传播、数据处理等工作,有待于进一步开发和完善,绝对依赖互联网络和设备,还存在一定的风险。

(二)发展目标

人工智能时代职业教育变革重新架构了职业教育发展模式,完成了对资源的重新整合配置,改变了人的思维方式、学习方式和生活方式。人工智能时代下没有职业教育模式的改革,就不可能建构真正的现代化职业教育。人工智能背景下职业教育的发展目标可以概括为个三方面:

1.“智慧脑”与“智能脑”融通

随着第四次产业革命的到来,信息技术爆发式发展,造就了以电脑、互联网为基础的智能脑。职业教育智慧化发展的一个目标就是如何让学习者发挥人脑“智慧脑”与机器设备“智能脑”的“双脑”共同协作[16]。人工智能时代职业教育与信息技术的深度融合,就是要通过“智慧脑”和“智能脑”的协同作用,发挥互补优势,进行融通式学习,而不是简单地人脑与电脑的技术对接。

2.“现实世界”与“虚拟世界”结合

在人工智能时代,网络虚拟技术的发展使人类拥有了真实与虚拟两个世界,虚拟信息技术的兴起在一定程度上会影响职业教育的实体教育,实体教育的发展也需要虚拟技术的支撑。但在具体的学习实践中,还会存在利用这两个世界时顾此失彼、难以平衡的问题。目前,虚拟化教育技术在职业教育领域不断应用与推广,职业教育的发展模式不断优化,使得职业院校线上线下的边界逐渐消融,“现实世界”与“虚拟世界”更好地结合。人工智能时代职业教育的本质没有发生根本改变,学习者要学会利用这两个世界虚实融合、高度互动,充分发挥出自身的优势,更好地学习与生活。

3.职业教育“适应人工智能”发展为“引领人工智能”

篇3

【中图分类号】G420 【文献标识码】A 【论文编号】1009―8097 (2008) 10―0043―04

教育部在2003年颁布的高中信息技术新课程标准中,首次把“人工智能初步”设置为选修模块,与多媒体、网络、程序设计、数据库技术等一起列入信息技术课程体系[1]。此举曾被视作信息技术课程改革的亮点之一。然而,在如今高中信息技术新课改已经全面铺开之际,人工智能选修课程的推进仍然举步维艰,面临诸多困难和问题。

一 高中人工智能课程的现状分析

自2004年我国部分省级实验区开始推进高中新课程改革以来,信息技术课程改革已经开展了四年之久。从目前的总体情况来看,信息技术课程的基础模块与多媒体技术、网络技术、算法与程序设计三个选修模块的实施情况较好,而数据库技术与人工智能初步两个选修模块的推进情况相对不佳。特别是人工智能课程,至今在全国范围内正式开设该课程的学校寥寥可数,少数高中展开了一定的探索和实验,而大多数学校仍持有观望态度。以下分别从实施取向和实施层次的角度分析该课程的现状:

(1) 课程实施的取向

由于我国长期以来实行的是全国统一的课程与教材,按照统一规定执行教学计划,对学校和学生的评价也是按照统一标准与方式实施的,因此我国以往的课程实施基本上都采用了忠实观的取向[2]。本次新课改中信息技术课程的实施过程难免受到这种取向的影响。然而,新课程标准中对信息技术技术各个模块的具体实施并没有明确而详细的规定,从而使教师对包括人工智能模块在内的课程实施缺乏长期惯于依赖的参照和依据,增加了课程实施的难度,造成部分模块的课程难以开设的情况。

(2) 课程实施的层次

课程实施包括五个层面的变化,即教材的改变、组织方式的改变、角色和行为的改变、知识与理解的改变、价值的内化[3]。目前高中人工智能课程在教材改变的层面已经做出了一定的努力。在课程标准的指导下,现已出版的五套教材在体例、版面、学习活动、评价等方面进行了多样化的设计,基本上贯彻了新课标所倡导的课程目标和理念。在组织方式的层次,少数已经开设人工智能课程的学校结合学生的兴趣与学校的实际情况,有针对性地开展了课程的组织。然而,仍然有一些地区或学校不愿或不习惯打破原有的课程组织方式,而是采用硬性规定的方式,人为指定两三门课程,将选修变为必修,限制学生的自由选择,依然维持原有的固定班级授课的形式。教材的改变仅仅是课程实施的开始,在组织方式、角色或行为、知识与理解、价值等层次,大部分学校还未发生变化或变化还很小。

(3) 课程实施的典型个案

目前国内开展人工智能课程教学或实验的典型学校如表1所示。总体来看,这两所学校都地处东南沿海地区,且学校本身比较积极参与高中新课改的实践探索,属于“敢于吃螃蟹”的类型。考虑到课程本身的要求较高,两所学校都选取了基础较好的学生开展教学。到目前为止,两所学校均已开展了三期的教学或实验探索,任课教师及时总结教学心得体会,并在相关教学刊物或课程研修活动中与广大一线教师分享教学经验。

二 高中人工智能课程的影响因素

根据Snyder的研究,可以把课程实施的影响因素归纳为四个方面:课程改革自身的性质、校区的整体情况、学校的水平以及外部环境[4]。结合高中人工智能课程的现状,本文分别从以上四个方面来探讨影响该课程的主要因素。

(1) 课改自身的性质

课程改革本身的性质是影响课程实施的第一要素。它包括课程改革的必要性及其相关性、改革方案的清晰程度、改革内容的复杂性以及改革方案的质量与实用性。结合信息技术新课程改革的相关调查研究,广大信息技术教师和教研人员对课改的必要性应该认识得比较到位,然而他们对信息技术课程中是否有必要单独开设人工智能模块存有疑惑。其次,不少教师对课程改革方案(课程标准)的认识并不是非常清晰。他们认为新课程标准中的教学理念、实施建议等内容相对抽象,不易把握和理解,缺乏具体的针对性,可操作性不强。再次,人工智能课程的实用性相比其他模块并不明显,课程内容也相对难度较高。这些因素造成课程设置的必要性不强、实施难度大、实用性不高,直接影响人工智能课程在学校的顺利设置。

(2) 校区的整体情况

校区的整体情况主要包括地区的适应性、地方管理部门的支持、教学队伍的培养、教学研讨和交流等等。各地区对课程改革的需要程度会直接影响人们实施课程的积极性和主动性。我国东西部地区的学校对课程改革的需求程度不同,从而造成了课程实施的地区差别。从目前开设人工智能课程或教学实验的学校来看,均分布于东南沿海较为发达的地区。这些学校的共同特点是基础条件较好,对课程改革的积极性高,敢于进行教学尝试和革新。此外,地方管理部分的支持对课程实施也有很大影响,如广东省为了推动信息技术课程改革,专门出台了关于课程标准的教学指导意见[5]。其中强调“要特别注意人工智能初步”,并针对人工智能课程提供了较为具体的教学建议,从而促使该省出现了全国最早正式开设人工智能课程的学校。师资队伍也是影响课程的因素之一。目前大多数高中缺乏熟悉人工智能课程内容和教学方法的专业教师,使得学校无法开设该课程。因此,有关人工智能课程的研讨和学习交流显得尤为重要,然而目前这些方面的活动总体上相对缺乏。

(3) 学校的水平

学校水平对课程实施的影响因素包括校长的作用、教师的个人特征和教师集体的行为取向。学校是课程改革的基本单位,校长和教师是学校课程改革的动因。校长对课改理念的理解,以及对课改的支持、参与程度都会影响课程的顺利实施。校长通常会根据上级主管部门的意见,结合本校的实际情况,权衡课程改革可能对学校形成的各种影响。在高考的影响下,信息技术课程在高中各科中长期存在地位“低人一等”的现象,甚至出现课时常被“侵占”的现象。如果校长对信息技术课程本身不重视,那么要求学校开设人工智能选修课无疑是一种奢望。此外,一所学校教师个人和集体的改革意识的强弱也会影响课程的实施。从人工智能课程的现状来看,恰好印证了这一点:改革意识强的教师个人或教研组即使没有上级的硬性指令,也能积极展开各选修模块的教学尝试和探索,并自觉地从教学者成长为研究者,而思想保守的学校即使具备了课程实施的基本条件,也不愿积极开设相关的选修课程,长期停留于课程的“忠实执行者”的层次。

(4) 外部环境

外部环境因素主要包括政府部门的重视、外部机构的支持以及社区与家长的协助。各国课程改革的经验表明,教育行政部门和相关机构的态度在很大程度上影响到新课程的顺利实施。特别是我国长期以来受到前苏联教育模式的影响,课程改革通常是自上而下的模式,新课程的实施主要依靠各级政府教育行政部门的政策和指令的推动。本次新课程改革同样继承了这一模式,但是整个教育体制和评价体系未能及时进行相应的调整,因此在某些方面造成各级教育部门的政策抵触,出现“上有政策、下有对策”的情况。此外,社区与家长对新课改的认识和态度也影响到人工智能课程的实施。研究表明,社区与家长更加关心的是新课改是否有助于提高学生的学业成绩,是否会给学生造成更大的负担,而对学生能力的全面发展和个性的培养则是其次的考虑。因此,要使社区与家长认识和了解课程改革的意义和目标,引导其关心新课程、支持新课程才能更好的促进新课改的健康发展,进而才可能使得包括人工智能在内的高中各科选修模块得以全面开设与实施。

三 高中人工智能课程的反思

通过调查访谈以及与相关授课教师的交流,笔者了解到高中人工智能课程的教学情况和教师的经验体会。总体来说,该课程的推进情况不如预期理想,需要从课程的设计、管理、教学以及评价等方面进行反思。

(1) 课程设计

本次高中信息技术课程改革将原来的一门课程分解为1个必修模块和5个选修模块,从而给学生提供多样化的选择。“人工智能初步”选修模块是作为智能信息技术处理专题设置的,以反映信息技术学科的发展趋势,体现教育的时代性要求。课程设置的目的在于使学生在技术掌握与使用的过程中,逐渐领会信息技术在现代社会中的应用以及对科学技术和人类发展的深远意义[6]。然而,以上的描述更多是该模块的隐性价值,相比其他模块该课程的显性价值并不是很直观。而一线的信息技术教师较多关注的是该课程的显性价值:课程能给学生带来些什么?学生的实践能力能否有较大提高?教师们在没有找到一个合理的价值依托之前,一般不会贸然开课。这一点值得课程设计者和教研人员的深刻思考。

通过网络问卷调查,不少教师认为人工智能课程在高中开设是有一定必要性的[7],但并不意味着所有的学生都需要学习该课程。课程应面向对人工智能有一定兴趣的学习者,且最好有一定的基础。事实上,相对于其他选修模块,选择人工智能课程的学生并不是很多。因此,结合我国目前的情况,可以考虑优先在发达地区条件较好的部分学校开设,再进一步利用其示范作用,以点带面,逐步铺开培训、指导、交流的规模和影响面,积极稳妥地推进高中人工智能课程的建设。

(2) 课程管理

课程的有效管理有助于提高课程实施的质量。上个世纪90年代以来,我国的中小学课程由原来的中央集权管理体制逐步转变为国家、地方、学校的三级管理体制。国家负责课程的总体规划,省级教育部门结合本地区实际制定课程计划或实施方案,而学校也将有权根据学校传统或学生兴趣开发适合本校的课程。目前人工智能课程虽然已被列入国家课程标准,但在地方管理层面并未得到应有的认可。部分地区考虑到高考因素,直接将人工智能模块排除在学生的选择范围之外,无疑成为阻碍该课程顺利实施的一个重要原因。

目前我国高中了解熟悉人工智能教学内容、方法的教师十分缺乏,相关教育主管部门需加强该课程的师资培养,邀请教材编写人员和相关专家,积极开展各级培训、研讨和交流活动,以务实的态度来听取学科教师的意见,为他们提供一些明确的、可操作的指导和建议。也可以开展优秀教学案例的征集和评奖,通过公开课的观摩和点评活动,或吸纳中学教师参与有关课程改革和教学研究的课题,以此提高教师参与改革的积极性。此外,国内高等师范院校信息技术相关专业应该对新课改作出及时的反应,针对高中信息技术各选修模块为师范生开设相关的课程,为课改的成功实施提供后备师资力量的支持。

(3) 课程教学

从已开展的人工智能课程教学或实验情况来看,主要的教学体会包括:教学对象选取时要有针对性,不宜硬性指定,应结合学习者自己的兴趣和学习基础供其自由选择;由于课程的理论和技术的要求较高,不宜大量采用“讲授法”进行教学,应设计一些有挑战性的活动供学生实践;为保证教学进度有序进行,可通过课堂小测及时巩固所学内容;应提供良好的网络条件和计算机设备以支持课程教学和实践的顺利开展。

国外一些高校通过远程网络的手段与中学合作开展人工智能教学,加快了课程建设的步伐,并提高了教学质量。大学负责教学网站的建设维护,主持与中小学的讨论答疑,中学则负责课程教学的具体实施。文中个案也印证了这种做法的有效性:让一些致力于高中人工智能课程研究的高校和部分条件较好的中学建立共同体,协作推动课程的实施。一方面,高校研究人员能为中学提供教学指导建议、技术和资源的支持;另一方面,中学的教学实践也为高校进行课程教学研究提供了材料和依据。

(4) 课程评价

研究表明,评价目前已成为影响高中信息技术新课程实施的一个重要问题[8]。从本次课改的动因来看,针对我国现行教育体制下的高考选拔制度在很多方面呈现的弊端,新课改力图在一定程度上改变这一局面,努力使学习者能够真正获得全面的发展。但是,在目前情况下以高考为“指挥棒”的评价体系短期内仍然无法发生质的变化。高中新课改实施以来,部分省份相继将信息技术课程纳入了高考的范畴,以往信息技术课程不受重视的情况逐渐得到了一些改善。然而,高考是否解决信息技术课程评价问题的一剂良药,进而为人工智能课程的实施及其评价带来新的希望,目前仍是值得怀疑和思考的问题。特别是当前高考科目已经较多,再增加科目无疑会加重学习者的负担,且很容易回到应试教育的老路上。

其次,虽然新课程标准中提供了关于课程评价的建议,但是其中的内容仍然比较抽象,可操作性不够。如在信息技术课程标准的评价建议中,提倡评价主体的多元化,关注学生的个别差异,综合应用多种过程性评价方式,适当渗透表现性评价的理念,等等。这些内容从理念上来讲都是很好的,但是如何在教学实践中加以操作实施,对一线教师而言仍是不够明确和难以把握的问题。而且,信息技术课程的每个模块各有特色,然而课程标准并未就此提供专门的评价建议。因此,一套科学合理、适合人工智能课程的评价体系和方法仍需要教研人员在实践中不断摸索总结。

参考文献

[1] 教育部. 普通高中技术课程标准(实验) [S].北京:人民教育出版社,2003:9.

[2] 钟启泉. 课程论[M].北京:教育科学出版社,2007:207-214.

[3] Fullan, M. & Pomfret, A. Research on curriculum and instruction implementation [J]. Review of education research, 1997, 47(1).

[4] Snyder J.B. & Zumwalt K. Curriculum implementation [M]. In Jackson P. W. (Ed).Handbook of Research on Curriculum. New York: Macmillan Publishing Company, 1992.

[5] 珠海教育信息网. 广东省普通高中信息技术课程标准教学指导意见 [DB/OL].

篇4

经过比较详细研究Alphago的算法发现,它在布局阶段的前20步采用人类经验,之后开始在人类经验的基础上融入了自己学习的权重,变得更加的理性以及所谓的大局观。由于围棋的复杂性,Alphago也不能在每步都能精确地知道当前棋盘中所有下法的胜率。所以,他采用的是在可以期待的近期(20步以内)综合价值和胜率会超过50%的走法。从这几点来看,这次的机器战胜远超过国际象棋中人类被战胜的意义。Alphago的算法是一种新的适应机器的思维,发挥了机器的强项,弥补了机器的短处。这非常让人感到害怕、悲观和失望。因为,人生就是一盘棋局。如果50年后,有一个智能科技机器助手,它不能告诉你最终的未来,但是可以告诉你在几年内的未来,你该如何是好?那这是不是一种宿命论?事实上,笔者在教授数据分析课程的这几年中,一直在宿命论和未来不确定性两种相对的观点中摇摆。数据统计已经有足够的算法和可靠的实践在某些方面做出人类无法预计或预见的准确预测,只不过那些领域还很小,比如,库存的预测、销量的预测,等等。数据已经在显示其巨大的价值,而一旦数据预测技术能够输入足够多的变量,采用类似Alphago或更加高级的算法,进而对你个人、你所在组织、公司、国家的短期未来甚至是长期未来做出80%、甚至是90%的准确预测,你会怎样去接受这样的未来?!当然,不确定性仍会存在,这是一个好消息。在此,我对Alphago事件尝试做一些思考分析。

 

一、Alphago战胜人类的几种可能的基础

 

1.Deepmind公司用十年的时间磨练,修改算法,虽然在算法上没有创新,但是如何融合已有算、如何调整权重等多个方面,仍然是做了大量、艰苦的工作。

 

2.Google拥有超级大量的计算资源供Alphago的使用,也就是说目前机器学习的过程非常的耗费时间以及计算资源。按照以往的经验,20年内,我们使用的桌面型机器就应该能够支撑起Alphago目前所需的计算资源。从现在开始,再过30-40年,可能Alphago这个“古老”的程序只需要几天就能完成现在几个月所需的机器学习时间。

 

3.在硬件上CPU和GPU的协同调度,以及分布式的运算的运用,大大加快的计算的速度。这也是近几年软硬件基础发展奠定的基础。

 

4.Alphago 在击败欧洲冠军时进行了严格的保密,说明当时Alphago团队当时也并不是很自信能够战胜。事实上,我认为,在这次比赛开始前,他们仍然没有这个把握,仍然应该认为是一半对一半的胜率。但是,哪怕输了,也没有关系,反正继续让Alphago学习后再提升。

 

5.Alphago对战时采用方式近似的模拟了人脑的信息的处理方式,只不过速度更快。所以,Alphago也不能百分之百的胜率,但是随着学习的时间不断增加,最终会远远超过人类。

 

二、Alphago围棋人机大战事件将会产生的影响:

 

1.个人,组织,公司,国家间的竞争将会更加重视人工智能的策略参考。人类的思考开始依赖于机器的理性,人的决策变得更加的理性,情感的因素会不断下降,也意味着更加没有人情味。这必然会影响到人类的进化进程。

 

2.人与机器的关系需要重新的思考,人应该如何同机器共存。

 

3. IT行业的人力资源需求将大规模增长,而有些行业将大规模失业。

 

4.基因技术、可控核聚变、机器人技术、人工智能这些技术都将对人类产生重大意义的影响,但是如何控制好这些技术将成为一个重大的问题,否则任何一个技术都可能毁灭人类。为了控制好这些技术,需要从现在开始立即进行大量的辩论及监督审查。

 

5.Alphago在最终在决定某个落子的评分中,其权重为人类经验参数同左右互搏这种机器学习得来的概率参数各占50%。Alpago团队曾经调整过不同的权重,但是经过实验发现各占50%时的最终胜率最高。这一数据是否在暗示,如果要战胜人类就必须首先理解人类的思考,否则就无法做到青出于蓝而胜于蓝。但是,在理解人类思考的同时,也会无法避免地继承人类的弱点,这也是Alphago最终会有失败的一局。另外,在具体的步骤中,也不是每步都是完美的。可能这也许是人工智能能够超越人类,但是可能无法毁灭人类的重要一点。因为,如果人工智能自己最终学会思考,相信人工智能最终会参透,或许最符合人工智能自身的利益生存方式是同人类共存,而不是消灭人类。

 

三、Alphago围棋事件可能对教育领域的产生的影响

 

1.Alphago算法有较强的通用性,但也有很多的限制。首先为了更加精确,需要大样本量的学习,Alphago为了加快学习进度在学习现有人类棋盘的基础上,开始自己与自己互博,加快学习的速度。这点在通用领域中实现有一定的难度。在教育领域中,目前比较适合Alphago算法快速进入的领域的是在线课程的学习。

 

2.在线课程的学习目前来说仅仅完成了内容的提供,如何编排现有的课程已达到最高的学习效率,这点目前还没有引入人工智能方法。如果引入,将会对教学的方法理论产生一定的影响,甚至会影响到线下课程顺序的设计安排。

 

3.多媒体材料的类型的挖掘,不同类型的媒体会带来不同的教学效果,人工智能在这个领域有助于通过大数据分析统计出在认知不同阶段采用何种类型的教学媒体效果最好。

 

4.个性化的学习,引入Alphago算法后的人工智能,会为个性化学习带来天翻地覆的变化。通过摄像头对学习者情绪的监控,结合学习过程中不间断的学习效果的评估,可以会带来真正意义上的个性化学习。

 

5.真正意义上的个性化学习会对分层教学产生深远的影响,因为学习的进度快慢会非常容易的将不同学习能力的学习者分类,教育会不知不觉走向过程和结果的不公平。

 

6.目前,已经有在线课程网站同招聘网站结合的构想,利用在线学习的记录,为雇主提供是否雇佣的参考。未来可能会更加大规模地出现该类现象,未来各级各类学校的升学也可能会更加依赖机器或网站记录的学习过程,同时造成新的学习能力歧视。但是,这样针对个体的不公平,却可以带来整个组织以及国家的利益最大化,将来如何面对这样的不公平,会成为一个重要的讨论话题。

 

7.Alphago通过在线教学领域的挖掘最终也会或多或少的影响到传统的教学。如在教师多媒体的选择标准、课程顺序及进度的选择。但是,在远远没有量化的教学领域,还有很长的路需要走,而一旦传统的教学领域被量化,如学生的表情、情绪、反应等,那么教师这个职业将同今天的围棋一样,不得不慎重的思考接受一个类似上帝的理性的人工智能的建议。另外,最快掌握这一技术的组织和国家,将获得先发的优势。

 

四、Alphago围棋事件可能对职业教育领域的产生的影响

 

1.大量的主要是重复性的工作,尽管需要一定的随机应变能力的工作,将会在30~50年逐步被人工智能所替代。这些职业中的低层次职员将被大量地解雇。这一点提醒职业教育的层次需要不断地上移,为符合人力资源市场的需求及保证国家的竞争力,职业教育中本科教育及研究生教育的比例将逐步加大。

 

2.工厂的工人将被大量的机械手臂代替,全自动化的工厂将越来越多。尽管处于迈向老龄化的社会,却并不能保证年轻人足够的就业岗位。IT产业的人力需求将越来越大,各个产业的从业者都将储存一定的人工智能的知识,以便同智能机器助手更好地共存。

 

3.职业教育的过程将更多地信息化,如教学资源库使用将更加类似于在线教学。通过物联网技术,教学的过程被更加地量化,实践操作的过程中实现较高精度的量化,实践教学的效率极大地提高。但是,工业领域的职业中的实践教学的比例将大幅度下降,由于机械臂的大规模采用,实践教学将被机械臂的操作实践教学大规模替代。对于人工智能分析、操作以及针对不同环境进行适应性调整的能力将成为大部分职业必修的课程。

 

4.有必要考虑培养学生的机器思维的理解能力,让学生能够理解人工智能的思维的方式,理解这种更加冷静的思维方式。同时,也要让学生明白人工智能不是万能,也会犯错,需要保持警惕,不可过分依赖人工智能。

 

篇5

自二战时期阿兰•图灵破解恩尼格玛密码机带来胜利的曙光之后,人工智能初见苗头,1956年“人工智能”一词首次由约翰•麦卡锡等科学家在达特茅斯研讨会上提出,时至今日,人工智能经历了60多年的浪潮和洗礼,其中有曙光、有冰封,也有期望。纵观当下,人工智能不仅仅是机器智能,在深度学习和推陈出新的算法推动下,其携手云计算、大数据、卷积神经网络等,攻破了自然语言语音处理、图像识别的瓶颈,像潘多拉的盒子一样在认知科学、机器人学、机器学习等领域全面开花,人工智能涵盖了从基础层、技术层到应用层等多个方面,为人类文明带来了翻天覆地的变化[1-2]。人工智能包罗万象,在其基础上衍生的大数据“洪流”对人类社会的方方面面进行冲击,这些数字的价值已然超越了诸如金钱、财产、黄金、石油,甚至是土地。然而,大数据技术也如同普罗米修斯盗得的圣火,一方面给人间带来温暖和光明,另一方面也有可能使自身被奴役甚至使人葬身火海[3]。因此,当我们沉迷于大数据的海洋中时,我们是否有能力像蓝鲸遨游大海一样自由掌舵,是当今大数据和人工智能时代存在的一个重大问题。是“曲径通幽”还是“会当凌绝顶”,我们如何在大数据中“浮游”,而不是一味地扩充,需要理性看待与合理评价大数据对人类生存和发展的影响。

1.人工智能和大数据与“工业革命”

2020年刚刚结束的新一轮美国总统竞选上演了各种“国家闹剧”,为何特朗普在2016年赢得大选,而4年之后却无法连任?时间推移,2016年他胜利的部分原因在于他利用了面临技术威胁的工业行业中工人们的焦虑,同时指责非法移民对美国及美国人资源和就业机会的占用[4]。但在技术浪潮的挑战中,自动化和人工智能才是占用的“根源”。早在18世纪60年代工业革命时期,机器取代人力,规模化工厂生产取代个体手工生产,即引发了人工智能数据的工业大变革。从机械结构、电气控制等模块的设计和改良,车间机器人的智能化已可以代替人完成生产作业[5]。通过智能化机器人可以减轻劳动负担,还可以用于环境检测[6]和实施救援[7]等,保护我们的人身安全。这些“机器人”在为我们减负的同时确实也引发了“失业危机”,这种现象不仅于美国,日本、韩国和德国亦是如此。我们也许可以形象一下,未来20或30年后,工厂中工伤几乎为“零”,完全实施机器人24小时作业,速度惊人,质量统一,而仅有的几个人使用简单的触摸界面对机器下达“命令”。机器的发展已超乎我们对普通机械的认知,21世纪开发的三大机器人中大狗(BigDog)解决了运动和重载运输问题,特别用于军事领域,被誉为“当前世界上最先进适应崎岖地形的机器人”;亚美尼亚(Asimo)从人类如何移动上展现了机器人仿人运动;Cog具有了人类所特有的思考,由不同处理器组成的异种机互联网络形成了“大脑”。特斯拉——其除了是电动汽车和能源公司外,还是自动驾驶汽车行业的领跑者之一。其2016年已销售具有自动驾驶、自动自制和自动停车功能的电动汽车,但出于法律和伦理层面,驾驶员还是要坐在驾驶位上,但他可以做他想做的其他事,发短信、打电话或是休息,而不再是驾驶汽车。我们可以不用担心酒驾,不用因为时间紧张而疲劳驾驶,不必为新手司机而变得脾气暴躁……汽车自动驾驶将让我们行驶得更规则、更安全和更“无聊”。自动驾驶上的智能进化,使得自驾型派送车为商业化服务成为可能,还有自驾型飞行器也在被研发,通用、宝马、谷歌等公司一直在努力开发,通过无人机在您家门口投送包裹将对电子商务世界带来更多创造性方案。“如果你够走运的话,机器可以把你当成宠物。”虽为戏谑之言,却又饱含心酸。工厂变得越来越自动化,但其仍需要人类专家,他们才知道如何监控传感器,知道在发生故障时如何进行修复,机器的运行离不开人的监控,只有人的思考才能有新产品的诞生以及高效的生产流程,我们与机器共存,是从体力中解放,但要从事脑力工作。

2.人工智能和大数据与金融的未来

“数字蝶变”席卷金融行业各个领域[8],金融行业应用大数据、移动互联网、人工智能等先进信息技术,累积了非常多的客户信息。通过大数据的帮助,金融公司在分析数据下寻找更多的金融创新机会。在商业智能(BI)的辅助下,电信业可以对客服描述和定位及需求进行预测;保险业可以在进行风险分析的同时进行损益判断;银行业可以调整市场活动,建立信贷预警机制等等[9]。人工智能和大数据让金融业形成了“以客户为中心”的模式。与客户最密切的金融即是金钱,但是它们已经被“支付宝”和“微信”以及更多的电子支付方式取代,越来越少的人使用现金,数字金钱是否会完全取代物质金钱,我们很可能会发展为无现金社会。那么首先“下岗”的是谁呢?答案毫无疑问:银行。巴克莱银行前首席执行官安东尼•詹金斯曾预测,对于工业化国家,银行员工和其分支机构在未来10年内会消失;花旗全球视角与解决方案的一项研究预测,美国和欧洲的银行将在未来10年裁减约180万员工;甚至2016年2月的一份丹麦银行家协会新闻稿表示,银行抢劫案数量连续第5年下降。就支付领域而言,在这样的时代背景下,如何利用大数据技术对跨越式发展的支付行业进行监管,成为一个值得深入研究的课题[10]。在人工智能下,我们都有被银行自动回复或自会读取特定问题的“员工”惹恼过。沟通技巧和财务知识同样重要,因此,银行业员工的下岗只是在基础性操作上,对于“专业咨询”,需要更多受过高等教育、具有更好沟通能力的员工。目前,我国的多数银行还没建立“开放、共享、融合”的大数据体系,数据整合和部门协调等问题仍是阻碍我国金融机构将数据转化为价值的主要瓶颈。大数据的整合、跨企业的外部大数据合作不可避免地加大客户隐私信息泄露的风险。有效防范信息安全风险成为商业银行大数据应用中急需解决的问题。

3.人工智能和大数据与“专家系统”

电子病历数据、医学影像数据、用药记录等构成了医疗大数据。医疗数据不仅包括大数据的“4V”特点,即规模大(volume)、类型多样(variety)、增长快(velocity)、价值巨大(value),还包括:时序性、隐私性、不完整性和长期保存性。医疗大数据可以提供预警性,当数据发生异常时,通过一定的机制可以发出警告,从而迅速采取相应措施,及时解决问题[11]。成立于1989年的美国胸外科协会(STS)数据库,至今已经涵盖了美国95%的心脏手术,收集了500万条手术记录[12]。其中的先天性心脏手术(CHSD)数据库是STS数据库的重要组成部分,是北美最大的关注儿童先天性心脏畸形的数据库,被认为是医学专业临床结果数据库的金标准。近年来,基于CHSD数据库所进行的数据挖掘不断增加,大型数据库对提高医疗质量所起到的正向作用正在日益凸显。如Welke等基于CHSD数据库探讨小儿心脏外科病例数量和死亡率之间的复杂关系[13];Pasquali等基于CHSD数据库探讨新生儿Blalock—taussig分流术后的死亡率[14];Jacobs等基于CHSD数据库采用多变量分析方法来研究病人术前因素的重要性[15];Dibardino等基于CHSD数据库采用多变量分析的方法来探讨性别和种族对进行先天性心脏手术结果的影响[16]。这些都是在医疗领域采用人工智能提供的医疗诊断,形成了“专家系统”,专家系统可以说是一种最成功的人工智能技术,它能生成全面而有效的结果。借助医疗大数据的平台,“专家系统”可以智能辅助诊疗、影像数据分析与影像智能诊断、合理用药、远程监控、精准医疗、成本与疗效分析、绩效管理、医院控费、医疗质量分析等。不仅是数据平台,“达芬奇机器人”可以看成医疗的高精尖“人工智能”,它能缩短泌尿外科手术以及术后患者恢复时间,促进患者早期下床活动,减低并发症发生率[17]。达芬奇手术机器人在消化系统肿瘤、泌尿系统肿瘤、妇科肿瘤和心胸部肿瘤等手术中均有运用[18]。正是机器人,还有其他人工智能设备,如插入手表或衣服里的传感器、植入我们皮肤下的芯片,以及智能手机中装有各种“专家系统”的远程医疗、预防医学,甚至是器官的3D打印和虚拟现实治疗等的发展,让医学发生相应的转变,并使其逐步突破人类的传统健康概念,那么是否意味着医学将成为只有科学性,毫无直觉性的学科呢?我们携带的内部传感器和外部应用程序将成为我们的医生吗?“你好,医生”被“嘿,Siri”取代吗?这不尽然。医学必然将是向精准化发展,并更具个性化、参与性、预防性和可预测性。医生不再是疾病的修理工,而是改善我们健康状况的顾问。直观当下,我们还是被“看病难”所困扰,我们提出“分级诊疗”,是在拥有家庭医生、全科医生和专科医生的基础上再加上人工智能,以实现预期的健康监测、辅助诊疗和疾病筛查。

4.人工智能和大数据与教育变革

面对各行业和各学科,教育作为传承文明和创新知识的载体,似乎被排除在人工智能之外。就目前而言,人工智能与教育深度融合发展还存在技术基础不稳、教育数据缺陷、算法能力不足等现实问题[19]。我国目前更想要做到的是在教育上消除“信息鸿沟”,促进教育公平、均衡发展。因此,目前可以看到人工智能的教育多在于语言学习软件,通过虚拟技术和人工智能构建一个灵活的、可扩充的虚拟交互平台,设计多维虚拟场景和智能人工角色,实现不同场景下人机角色的交流和学习,提升学习者的口语能力和语感知识[20]。这使得教师不再是唯一的知识传播者,任何互联网搜索引擎都将提供比教师所有的更多信息,并且可以更快捷地获取。肺炎疫情暴发以来,远程网络教育成了主要教学形式,互联网教育形式其实早在小学、中学和大学中运用,虚拟现实技术在教学领域的研究和探索也在全面展开。谷歌已经开发一款VR纸板视图,并将研发的虚拟课程一起推向市场,使现实生活中在生物课上解剖一只青蛙成为一件容易且有趣的事,通过虚拟青蛙,学生们可以去除心脏和其他器官,而不再是象征性的抽象体验。虚拟现实可以像互动游戏一样,比单一的在教室听老师授课带来更多乐趣和体验,学习效果可能更好。我们的学习是知识的积累,那么教育就是我们的库,荀静等结合自身情况对西安工业大学知识库构建进行探究,认为机构知识库在保存知识资产的同时,更重要的是促进学校知识资产的传播利用和管理,提升学校影响力和学术声誉[21]。刘畅等通过对东北大学机构知识库服务的推广研究,了解到开放获取的概念和实践已经受到了广泛的认可,机构知识库不仅可以成为一个知识的存储库,也可以成为各个学科领域的学者进行在线交流的平台,提供个性化的增值服务,既有利于机构知识库的内容建设,也可以进一步促进学术交流和科研合作[22]。知识库,即大数据的有机整合和有序利用,是学术成果、视频文档、实验数据等进行收集、长期保存、传播和提供开放利用的知识资产管理与教育服务[23]。

5.人工智能和大数据应用的共性需求

人工智能和大数据时代,海量的信息来自“五湖四海”,但都通过互联网络汇聚智能终端。这些数据只会进一步增多,不仅仅是云存储,对于信息的进一步挖掘、处理、分析和利用,目标性结果才是我们最想要的信息。全球包括IBM、微软、谷歌和亚马逊等一大批知名企业纷纷掘金大数据挖掘这一市场,大家都在开拓自己大数据分析平台。数据挖掘是大数据时代孕育的产物[24],是我们的共性需求,与传统的统计分析技术相比,数据挖掘有着自身的本质特征,数据挖掘是在没有明确假设的前提下去挖掘信息并发现知识。数据挖掘所得到的信具有先前未知、有效以及可实用三个特征[25]。数据挖掘的出现不是为了替代传统的统计分析技术,相反,它是统计分析方法学的延伸和扩展[26]。随着信息时代的到来,数据挖掘被越来越多地应用于各个领域。

6.人工智能和大数据的展望

篇6

一、引言

人工智能的不断发展与拓展促进了我国各个领域的发展,同时对各个行业产生巨大冲击,很多需要人工机械作业的领域将会使用机器人,造成大量人员的失业。面对如此现状,今后我们高中生如何做好职业生涯规划成为当务之急,只有深刻把握社会发展趋势,加强学习方向与时代潮流的匹配性,才能迎接挑战、抓住机遇、趋利避害,做好职业选择和规划,更好地适应今后的社会发展。

二、人工智能的发展现状和趋势

(一)人工智能的发展现状

“人工智能”一词最初是在1956年Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。目前,人工智能技术在美国、欧洲和日本呈现飞速发展趋势。随着人工智能技术的快速发展,人工智能已经在各个行业得到广泛应用,其中比较典型应用主要包括符号计算、模式识别、机器翻译、机器学习、问题求解、逻辑推理和定理证明、自然语言处理、智能信息检索技术以及专家系统等,这些在计算机领域、化学领域、医学领域以及矿物勘测领域等得到广泛应用,并取得较好效果。

(二)人工智能的发展趋势

技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会综合模糊处理、并行化、神经网络和机器情感等进行全方位发展。随着全球化趋势的不断增强,今后人工智能会向着全球国际标准的方向发展。人工智能技术不断地在就业领域应用及发展,因此高中阶段就对自己的职业生涯有着规划是未来发展的必然趋势,并且美国、加拿大等先进国家早早的就把高中生职业规划教育课程安排在了高中阶段,相比之下安排职业规划教育课程的高中毕业生,甚至大学毕业生对自己的规划都有着明确的方向,我国目前某些地区高中阶段已经安排了职业规划类型的课程,相信不久高中生职业规划的课程也会出现在更多地区的校园。

(三)人工智能发展对就业的影响

随着机器眼下正在取代的首当其冲的是那些简单机械操作的劳动者,比如说我国工厂里的初级工人正在面临自动化的威胁。还有美国福特公司,不仅大量裁减蓝领工人,而且还要把工厂搬到别的州或国家去,那里税收更低、政策环境更宽松、工会更友善的,在这些地方使用机器人不仅可以提高作业效率和质量,而且能够极大的降低各种成本,能够为企业创造更多的效益。

随着人工智能的快速发展,人工智能对各个领域的就业产生了重大影响,我国也在往这个方向发展,对于IT行业,今后会大量使用机器人进行工作,制造业也在逐渐增加使用机器人。技术的进步,使得个人的生产效率得到了巨大的提升。虽然就短期而言,机器是不会一下子取代大多数人,但我们必须未雨绸缪、防患于未然。有一些机械的、长时间集中精神的、固定套路的工作,比如流水线工、司机、配药师等,机器比人还擅长,这些领域将会淘汰大量的工人,导致很多人员失业。而很多工作需要人搭配机器做才最高效,这些工作是主流的新工作,但是需要注意的是,在人和机器协作的过程中,机器一定会不断智能优化的,在单一专业的工作内容中,机器逐渐又会替代人,因此也会造成人员失业。对于人际沟通事务,由于需要人与人之间的交流,还是人比较擅长。审美是模糊的、社会性的,这个还是人比较擅长。

对于我们高中生而言,勤动脑,勤动手,不断创新,是未来立足之本。因此不仅要埋头学习知识,还要培养创新能力和实践能力,以应对迎接人工智能的挑战。

(四)高中生应该怎样规划职业生涯

面对人工智能的快速发展,今后我们高中生应当趋利避害,努力做好职业生涯规划,实现自我价值的增值,具体来说应当从以下几个方面入手:

1.增强职业规划的意识

高中生要根据自身的主观因素以及外界的环境因素,分析、归纳、选择自己的职业发展方向,并且制定相应的学习、培养计划,采取必要行动去实现目标。这种确定人生方向的规划问题应该在高中阶段每一个学生都应该对自己有着清醒的认识,并且得到自身的重视,对选考科目的选择及大学志愿的填报就不会盲目、无头绪,在高中阶段有了明确的目标会使自己的学习方向更加准确,学习积极性更加强劲,同时在就业选择上也可以尽量地少走弯路。

2.选择高水平的职业指导教师

高中生实现从学校到社会或者更高层学校的过程中职业规划具有重要的导向作用,因此在高中阶段一个好的职业规划指导教师对学生的影响有着重要的意义。首先我们选择的职业规划指导教师必须具备一定的任职条件,目前国家也一再的强调任职职业资格的严格性;其次就是指导教师要善于启发式指导学生,增强学生的独立思考能力,在教师的帮助下充分认识自己的天赋、特长、兴趣、能力、心理等方,发现和挖掘自己多方面的潜能,学会正确利用各方面条件充分发展。同时,要注意避免指导教师的思想左右了我们的思想,只有准确的认识自己,才能促使我们带着自己的职业规划继续努力进步。

3.自己的高中生涯规划

高中的三年,对一个高中生的人生有着重要的意义,因此高中阶段可以进行分阶段的自我管理培养。高一阶段:刚进入学校,通过学习了解学科特点,利用学校、教师、网络、社会了解就业动向,自我优势结合人才需求,明确选考科目,初步制定职业发展意向。高二阶段:正确处理选考科目学习与学考科目学习的关系,既突出专业知识又兼顾知识广度。高三阶段:更要处理好语文数学英语必考科目学习与选修科目深化拓展的关系,既要提高高考成绩又要深化拓展专业素养;既要强化高考复习又要重视面试培训,为参加高校自主招生考试或“三位一体”考试做好充分准备。因为近年来重点大学通过高考统一招生录取的名额正在减少,而自主招生或“三位一体”的名额大量增加,有志于就读名牌大学的学生要注意这方面的情况。同时高中生要根据自己的理想多去了解高校情况,多去了专业设置的情况,为报考适合自己的学校及专业做好信息准备。

4.积极参加选修课程,为今后的职业生涯做好基础

按照教育部有关规定,高中学校要开设选修课程。我们可以根据自己的兴趣爱好,选取自己喜欢的课程进行学习,这不仅可以及早的发现我们的喜好和特长,为我们的职业生涯做规划有着重要的参考意义,同时对我们的基础知识的培养也很重要,拓宽了我们的见识宽度,为今后的职业生涯奠定坚实的基础。

参考文献:

[1]刘界,黄冠,王冰洁.关于人工智能教育如何弥补当前教育缺陷的思考[J].内蒙古民族大学学报,2006,12(3):50-51.

[2]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003.20(8).

篇7

不过,一直强调“影响力最大化”的李开复,2013年被诊断出患有淋巴癌,“生命可能只有最后100天”,他不得不终止工作,回中国台湾治疗,直到2015年2月复出。此间,没有李开复坐镇的创新工场略显沉寂。

这次回归,李开复带着他的第六本书――《向死而生:我修的死亡学分》,瞬间引发所有媒体关注。

在强调“唯快不破”和狼性的中国创投界,李开复复出后,根据自己的实际情况提倡“工作和生活要平衡”,却与这个氛围有点不一样。对于大部分中国创业者来讲,每个领域的竞争异常惨烈,现阶段还不能实现所谓的工作生活的平衡,甚至连身体健康的及格分都拿不到。对此国情,李开复也表示理解,但他认为创业者每周花1-2个小时在锻炼身体上是值得的,会让创业者跑得更远。

大病之后,李开复现在强调自己的身体健康要做到80分,每天至少睡7个小时,但他回归后,依然强有力推动创新工场前行。除了出书,他做的另外一件大事就是和团队一起推动创新工场2015年11月5日在新三板挂牌。这赶上了好的窗口期。因为不久后,证监会叫停了PE和投资机构上新三板。

把创新工场挂到新三板,与其他早期投资机构比,让创新工场有了一个更好的激励机制:可以通过发股票和期权激励投资经理和管理层,不用完全指望薪水+投后收益分成。

创新工场挂牌新三板还有其他好处:传统VC/PE基金的问题是到期(7-10年)就要解散,把钱分掉。创新工场上市后,只要满足投资者(LP)期望的回报率,没有强制义务要把赚来的钱分掉。另外,创新工场还可以通过上市主体募集资金,投向创新项目。

从创新工场披露的资料看,前谷歌中国商务拓展总经理汪华、前谷歌中国首席运营官陶宁、前易官高管郎春晖和张鹰成为创新工场共同的实际控制人,直接和通过育成管理间接控制公司的股权比例合计为84.64%。这解决了创新工场最大的隐患――李开复一旦因为身体原因不能全心管理创新工场,创新工场如何长效运营问题。当然,这也解决了创新工场核心团队的激励和稳定问题。

在原创新工场合伙人王肇辉、邱浩先后自立门户创立基金的情况下,李开复和他的团队新补充了得力干将――前《IT经理世界》杂志创办人,总编辑王超2016年4月加盟创新工场,担任创新工场运营合伙人、CMO。《IT经理世界》在媒体界以报道技术创业著称。

但当移动互联网走向纵深,李开复最重要的任务还是帮创新工场找到下一个大风口,而且这个风口一定要跟李开复和创新工场基因匹配。创新工场当然也投文化娱乐,但那好像更适合李开复的老朋友真格基金创始人徐小平,他投过Papi酱,他在黑马学吧直播时,号召中国所有的艺术生都应该去做网红。

但,李开复有属于他的运气。

2016年3月,谷歌的AlphaGo与围棋九段李世石大战,最终AlphaGo 4:1大比分胜出。这引发全社会人工智能讨论的热潮,业内认为移动互联网之后最大的趋势是人工智能。这似乎是为李开复和他的创新工场准备的。

李开复除了是“青年导师”外,还有一个重要的身份是计算机专家,而且是专研人工智能细分领域――“语音识别”的计算机专家。

据李开复的传记《世界因你而不同》记载,1983年8月,李开复在卡耐基.梅隆读博士,师从印度裔教授拉吉.迪瑞,研究的方向是“不特定语者的语音识别系统”,李开复通过将统计学引入语音识别研究,将识别率提高到96%,并在1988年的世界语音学术会议上发表成果,这项成果不但被《纽约时报》报道,还被《商业周刊》选为1988年最重要的科学发明。凭这一成果,李开复获得博士学位,并留校任教。1990年,李开复还作为专家到北京信息工程学院讲授计算机课程,吸引了中国知名计算机专业的教授、研究人员等参加。

1990年,李开复被邀请到当时最牛的电脑公司苹果工作,为Mac iii开发人机互动系统。1991年李开复任苹果ATG语音小组经理。1995年,年仅33岁的他成为苹果副总裁。1998年,李开复回国创立微软中国研究院并出任院长,他和他的团队主要的研究方向包括“虚拟3D”、“图像识别”、“自然语言”、“语音技术”等。

后来,李开复先后出任微软副总裁、谷歌中国总裁,更多的精力转到战略和管理,已不在科研一线。不过,说他是人工智能领域的行家没人会质疑。

善于抓住机会施加“最大化影响力”的李开复不会放过这波对于创新工场来讲极好的机会。

在AlphaGo大战李世石时,李开复作为专家发表言论。6月8日,李开复应清华大学交叉信息研究院院长、世界著名计算机科学家姚期智院士邀请,做了名为《人工智能的黄金时代》的演讲。 6月12日,他与创业黑马董事长牛文文在黑马全球路演中心做花椒直播时,其中一个重点话题是人工智能。

李开复告诉创业家&i黑马,特斯拉创始人马斯克担心人工智能技术和人才被掌控在微软、谷歌、Facebook手里,存在“作恶”的可能,所以他疯狂地投入金钱挖人做Open AI。但李开复认为,人工智能短期内不会“奴役”人类。

(TIPs Open AI:2015年12月创建,它的使命是研发人工智能和其它机器学习技术,确保机器人未来不会伤害人类。它从马斯克、奥特曼,以及硅谷知名人士杰西卡・利文斯顿、PayPal联合创始人彼得・泰尔等人手中募集到10亿美元。)

李开复看好人工智能在以下领域的广泛应用:DNA检测,药物白鼠试验,发明新材料等。人工智能最大的应用在无人驾驶,世界上10%的人的工作都跟驾驶有关。

李开复说,图像识别、语音识别方面,机器的识别率已超越人的识别率,这意味那些主要靠“听”和“看”吃饭的人要被机器取代。比如“看脸”作为核心工作的保安;比如那些靠“听”吃饭的人――客服、翻译。

“每个领域人工智能都有可能对传统公司产生颠覆,每产生一个有价值的机器人,一个人、一个群体就会失业,这对社会影响非常大。10-15年之后,世界上90%的工作,也许50%的人类可能都要面临工作部分或全部被取代。”李开复说。

而另一个科技界的大佬,华为创始人任正非,从更高维度表达了自己的担心:“未来社会是一个智能社会,不是以一般劳动力为中心的社会,没有文化不能驾驭。若这个时期同时发生资本大规模雇佣‘智能机器人’,两极分化会更严重。这时,有可能西方制造业重回低成本,产业将转移回西方,我们将空心化。即使我们实现生产、服务过程智能化,需要的也是高级技师、专家、现代农民……,因此,我们要争夺这个机会,就要大规模地培养人。”

与任正非的判断英雄所见略同,要想不被机器取代,李开复认为人们应该注意以下几个方面:一,关注启发式教育,用互动式教育启发孩子对学习的兴趣和效率;二,正视发育右脑的学科领域,平衡文理;三,鼓励有上进心的年轻人挑战自己, 孜孜以求,成为专才;四,不要把时间浪费在“安稳”但是重复性的工作上。

作为创新工场的创始人,李开复关注人工智能对人类“毁灭”的科幻可能,但更关注其带来的机会,李开复认为创新工场是一家比别的机构领先几年的机构,当“大家还不知道安卓的时候,我们已经把整个产业链投了一遍。”

“大概一年前,我们认为人工智能将是下一个风口,我们在无人驾驶、视觉、语音,怎么在金融业、医疗界用人工智能创造价值(等方面),做了一系列投资,现在已经投了20多家公司。”李开复告诉创业家&i黑马。

“不同时代,最适合创业的人不一样。移动互联网时代,那些看过美国移动互联网怎么起来的人会有很大的优势。

人工智能时代,那些在美国Google、Facebook、微软工作过的,或在美国斯坦福、麻省理工等名校学过人工智能的海归理工男,今天是属于他们的风口。他们所学的东西在国内还没有取得成绩。”李开复说。这样的海归理工男最容易跟具有理工男气质的创新工场结合。

不过李开复也担心理工男的一些缺点,比如想法很好,风口也对,但执行力太欠缺,比别人跑得慢;还有创始人主意多,不够专注。李开复承认,创新工场上一轮投移动互联网的时候,有几个被清盘的项目,就有上述原因。

以下为牛文文VS李开复在黑马学吧《大咖来了》上的对话实录

牛文文:我听说你带创新工场的创业者去了一次硅谷,想听听你此次的感想。

李开复:这次硅谷之行我带大家去了苹果、Google、Facebook和特斯拉等各种传奇公司,到了创始人家里面,也去了工厂里面。

这次回来,我们感觉非常震撼,硅谷真的是不一样,我们参观的很多都不是10亿美元的独兽,而是百亿和千亿美元市值的公司,看完了以后就感觉到,硅谷精神有几点很特殊:

1、硅谷文化不是一个文化,而是多个文化,而且它的文化是独特性的和有情怀的。

2、硅谷最爱的就是人才,是真爱人才,不是口头上的爱人才。

3、这些创业者真的特别的偏执和强大,他们绝对不是四平八稳的职业经理人。

而在国内创业环境竞争剧烈,VC追着创业者,是滚动的商业模式,先去起量再去变现,所谓的游戏规则都写好了,每个人拿着游戏规则照着做,如果能力好和运气好就做出来,上市、发财,然后做导师和天使等等。

牛文文:这跟以前不是一样,一直如此吗?

李开复:其实创业者并不觉得一直如此,比如说文化听起来很虚,很鸡汤。每个公司都有文化,我们公司也有,成立了公司,挂一个牌子:以人为本、科技创新、诚信为上。但我们的创业公司很少有文化、口号和价值观。

反而这个所谓的文化、价值观和口号只是一个说辞,用来“蒙骗”员工的,但是员工的眼睛是雪亮的,他们不吃那一套。再往下说,文化是废话、文化是假话,文化都是公司领导来骗员工的,员工打死也不相信,所以文化几乎变成了一个贬义词。

但是这次去硅谷大家看到,苹果有它的文化――把保密作为公司的第一位。他们的员工什么都不跟你说,下了车警卫就把我们带进去,之后说不准拍照,苹果就是这么把它的文化执行出来的。我们见到了苹果公司前10号人物里面的前3位,每问一个问题大家都充满着期望,但所有回答你都可以在网上找到。由此,你就知道苹果的文化就是保密。

另外一个极端的对比就是Airbnb。很多人觉得,Airbnb不就是个提供住宿的平台吗?我们中国有携程、去哪儿、要出发。但是你进去以后就会发现,真的不一样,为了接待我们40个人,他们派了4个导游和4个员工,这些放下工作来接待我们,对我们的照顾简直是无微不至。

后来,我们问为什么派了4个导游?他们回答说因为这是Airbnb的文化:给人宾至如归、做好主人的感受。同时,他们也要求每一个出租房间的人要做到宾至如归,他们的处罚和奖励等产品功能设计也都是在围绕这一文化。

你可以通过这两个例子发现,要把文化融入公司的每一件事情里是需要去做的。

牛文文:硅谷在我们的印象中只是个印象,但我听说去年是一个拐点,说在硅谷和纳斯达克,大家对消费互联网的创业机会和热情没那么高了,而底层硅谷发生了一些变革,人工智能学习和超级高铁等。我最近一年没去了,超级高铁是真的吗?

李开复:超级高铁我倒没了解,我知道癌症和机器学习比较多。其实这一切跟机器学习都有关,我们今天看大家都在炒AlphaGo(阿尔法狗)。阿尔法狗这条“狗”真的蛮聪明,十年前有三位科学家发明了新算法,而这十年里,我们可以看到,无论是在人脸识别和语音识别,机器人的识别率都已超越人类,这就意味着那些做着听东西和看脸工作的人就要被取代。比如保安、安防、边防人员,这是看脸的工作;客服、呼叫中心这一类是听东西的工作。

人工智能这个领域,我觉得刚刚开始,它对每个领域都可能产生颠覆效应,比如金融和贸易。而最大的应用领域是无人驾驶,世界上10%的人的工作都跟驾驶有关。比如说一个推销员,他开着车去卖东西,那他的时间10%花在了开车上,以后如果有自动驾驶和无人驾驶,他坐在车里继续办公,那么可以节约10%―20%的时间。

当然,人工智能是把双刃剑,每产生一个伟大的公司,一个传统的公司就倒闭了;每产生一个有价值的机器人,一个人和一个群体就失业了。

再说癌症,其实现在也有人用人工智能做DNA的检测和排序,针对每个人提出解决方案。比如有一个公司自动测试小白鼠,它把无数小白鼠送进去,以后就不用人每天检查,机器人会自动抽血和试药,最后活了多少、死了多少,下一步进入临床实验,都由人工智能来定。

还有人用人工智能发明新材料,因为发明新材料本身是一个尝试和验证的过程,而任何东西的尝试和验证都可以用人工智能来推测。

在硅谷,我们还可以看到另外一个有趣的现象,Google、Facebook和微软都在高薪抢人工智能人才,因为机器学习专家仅有几千个以下。有人就说,这三个公司未来会发生大战。有人还说,这次美国大选就是被Facebook操作,公司强大了就有可能这种事情发生,当然也可能是阴谋论。

另外,Google现在太强大了,它甚至要把大脑挖出来做研究,所以当它进入医疗和金融领域时,硅谷很多公司就很惶恐。

牛文文:是不是像X-MAN一样,是有超级能力的人,一旦脱离人的控制?现在他们真的是担心机器强大了人管不住吗?

李开复:我觉得有一大批人是这样的,以马斯克为代表……我们也去看了马斯克的工厂,人只是编程和协调而已,这些机器还是人的奴隶,马斯克担心的是机器变聪明了、会思考了。当然,机器人现在还做不到这两件事:不能自己复制自己,没有自我存在的意识。再下一步,机器人还需要知道我是谁,我为什么存在,我怎么让自己不消失。

牛文文:他们会谈恋爱吗?

李开复:我个人认为机器人谈恋爱可能还需要几十年才能实现。当马斯克跳出来说,Google、Facebook和微软作恶的太多了,我们要把AI推向开源化,所以他做了一个开放的AI,这个公司很有意思。他说,自己要让最聪明的人不去Google、Faceboo和微软上班,然后自己拿出几十亿美元养着他们,让他们把研究成果分享给世界,每个AI模块里面要放上保护作用以免它发生爆炸。

篇8

得AI者得未来

2015年底,许多机构在展望2016年度科技领域时几乎会不约而同地将人工智能列为重点方向之一。现在来看,人工智能的火爆程度让最乐观的预测者都大跌眼镜,这得归结于AlphaGo的推波助澜。

正如文章开始所说,人工智能的使命便是完成海量物联网数据的商业价值转化。根据相关预测,2021年,全球将会拥有18亿台PC,86亿台移动设备,157亿台物联网设备。而到2035年,物联网设备的数量将会超过1万亿台,相应的数据数量将会增长2400倍,从1 EB增长到2.3ZB。如何有效管理、控制和利用如此浩瀚的数据,人工智能是解决之道。

所以说,得物联网者得未来,而得人工智能者将执物联网之牛耳。只有人工智能才能为“万物互联”之后的应用问题提供最佳的解决方案。

2016英特尔中国行业峰会上,英特尔与科大讯飞公司签署合作备忘录,双方将在人工智能领域展开为期三年的基于英特尔至强处理器+英特尔至强融核处理器,以及英特尔至强处理器+FPGA为基础的机器学习/深度学习研究项目。科大讯飞联合创始人,讯飞研究院副院长王智国博士非常到位地点评了这一合作:“一直以来,我们双方都致力于人工智能技术的创新和行业的推动,一方擅长底层计算架构,一方擅长算法及应用。我们期待双方在人工智能技术上的深度合作能够推动硬件和软件的协同设计及优化,共同发现人工智能计算平台创新的解决方案,推动人工智能产业的发展,并通过这些创新的技术支持更多行业用户进行业务转型。”

作为全球最大的半导体芯片制造商,英特尔的公司定位正在悄然发生变化。如今,英特尔将自己定位为“一家致力于驱动云计算和智能互联计算的公司”。可见人工智能已经成为英特尔公司的未来战略方向之一。

人工智能对计算力资源的需求到底有多大,现在谁也无法预判,这就像是个“计算黑洞”。但有一点可以肯定,人工智能是高性能计算在现在和未来的进一步延展和进化,而这恰好是英特尔的优势所在。

对英特尔而言,进入人工智能领域是水到渠成的事情,也是技术上的自然演进。从另一个角度看,物联网和人工智能是历史摆在英特尔公司面前一次前所未有机遇,其空间和舞台远大于PC时代和互联网时代。送上门的蛋糕(要知道,当今世界90%以上的数据都是由英特尔处理器来承载的),岂能让它从嘴边溜走。

从资本到技术,从硬件到软件

基于新的公司定位,英特尔开始从资本层面进行帝国的战略布局。作为硅谷最大的企业风司,英特尔投资总裁Wendell Brooks 说“会把未来的投资聚焦于那些能够更好拓展公司业务发展的领域”,人工智能毫无疑问是重中之重。

9月宣布将收购计算机视觉创业公司Movidius,后者致力于研发低功耗的计算机视觉芯片;8月将Nervana收入囊中,后者主攻半导体、软件和AI深度学习技术;5月宣布将收购专注于计算机视觉技术开发的俄罗斯公司Itseez;4月收购意大利半导体功能性安全方案厂商Yogitech;2015年12月完成了对可编程逻辑器件厂商Altera的收购;2015年10月收购了人工智能公司Saffron Technology……

针对某一业务领域展开如此高密度地集中收购,无论是在英特尔公司历史还是整个IT行业都是十分罕见的。可见,英特尔布局人工智能的决心之大。

由于技术因素,专用领域的智能化是人工智能未来5到10年的主要应用方向,比如自动驾驶。在更远的将来,随着技术的进一步突破,通用领域的智能化有望实现。但无论是专用还是通用领域,人工智能都将围绕“基础资源-技术平台-业务应用”这三层基本架构形成生态圈。

篇9

出版社: 中信出版社,2015年7月

一位程序员幸运地抽中了老板的大奖,他将受邀前往位于深山的豪华别墅,与老板共度假期……事实上,员工被邀请来是为了协助老板完成其所开发的智能机器人测试――图灵测试,即测试电脑是否具有“人类思维”。如果电脑能在5分钟内回答由人类测试者提出的一系列问题,且超过30%的回答让测试者误认为是人类所答,则电脑通过测试。然而在随后的交流中,这名员工越发觉得,他所面对的似乎不是冷冰冰的机器,而更像是一个被无辜囚禁起来的少女,楚楚可怜……

这是几个月前在北美上映的电影《机械姬》的剧情。近年来,与其同一类型的影片还有很多,《超能查派》《超体》《我,机器人》……这些影片实则都表达了同一主题――当机器人足以智能,小心科技反扑。随着智能科技的发展、工业机器人的出现,人类和我们的机构已经出现无法赶上机器脚步的迹象了……

作者在本书中也表现出了这样的担忧――我们无法(也不能)阻止科技的进步、世界的发展。同样地,我们将很快迎来机器人全面崛起的时代。

传统时代,我们对机器人是乐观的,即使一些工作被淘汰,但会有更多的工作被创造出来,以满足新时代的创新。由此所带来的经济社会问题也可以通过加强医疗卫生、退休和失业保险制度,培训和教育的强化来调整。

然而,到了机器人时代,这些想法完全错了。过去很多所谓的“好工作”将会过时:律师助理、记者、药剂师、上班族,甚至电脑程序员都将被机器人和智能软件所取代。伴随着机器人技术的日渐成熟,工薪家庭和中产阶级家庭将受到进一步挤压。同时,人们的家庭还将经受生活成本上涨的冲击,尤其是教育和医疗保健成本的上涨。这一切很可能造成大范围的失业和经济状况的不平等,甚至还会造成社会固有结构的崩溃。

在本书中,福特的观察要更为深入一些,其论调也更显悲观。他提到,技术对就业的影响,对个人生活和社会整体的潜在破坏,会交互于其他主要的社会和环境挑战,比如人口老龄化、气候变化和资源枯竭等。事实上,它的可怕之处还在于,如果人们不承认或不适应技术进步带来的消极影响,全球将面临着一场“完美风暴”:不平等的剧增、技术失业以及气候变化所产生的影响将并行出现,而且在某些方面它们还会彼此放大和加强。美国从全球抢回制造业,却没显著提高就业,就是因为就业机会被机器人抢走了。

篇10

一、了解高中信息技术学科的教学内容。

针对学生不同的信息技术基础,教学内容有较大的灵活性,既保证起点水平较低的学生能够适应,也给学有余力的学生提供进一步发展的空间,使所有学生都能得到充分的发展。

高中阶段信息技术课的内容包括:信息技术基础、网络技术应用、多媒体技术应用、算法与程序设计、数据管理技术和人工智能初步等几个模块,每个模块又可划分成若干教学单元。其中信息技术基础是必修模块,其他几个模块均为科目内选修模块。

根据课程标准的要求,每个学生要完成必修模块和至少一个选修模块才能取得高中毕业资格。每个模块的内容如下:

(1)信息技术基础模块是培养学生信息素养的基础,也是学习其他模块的基础,具有普遍价值,是高中阶段信息技术课的必修内容。这部分内容着重强调在大众信息技术应用的基础上,让学生亲身体验理性建构的过程。

(2)网络技术应用模块由网络技术基础、因特网应用和网站设计与评价三个单元组成。

(3)多媒体技术应用模块是引导学生通过亲身体验,认识多媒体技术对人类生活、社会发展的影响;学会对不同来源的媒体素材进行甄别和选择;了解多媒体信息采集、加工的基本原理;掌握应用多媒体技术解决问题的思想与方法;初步具备根据主题表达的要求进行多媒体作品的规划、设计与制作的能力。

(4)算法与程序设计模块是介绍计算机解决应用问题的基本方法,通过本模块的学习,要求学生了解计算机解决问题的基本过程和思想,掌握程序设计语言,并通过列举和分析典型算法,培养学生逻辑思维能力 和解决实际问题的能力。

(5)数据管理技术模块以介绍数据库相关知识为主,建议划分为数据管理基本知识,数据库建立、使用与维护,数据库应用系统等三个单元。要求学生通过本模块的学习,学会使用数据库管理信息,处理日常生活中的问题,体会数据库对社会生活的重要影响。

(6)人工智能初步模块强调让学生体验典型人工智能技术的应用过程,了解其基本原理。主要划分为知识及其表达、推理与专家系统、人工智能语言与问题求解三个单元。通过该模块的学习,了解人工智能的基本概念和特点,会简单使用人工智能语言解决问题;能够用专家系统外壳开发简单的专家系统;感受人工智能的丰富魅力,知道人工智能对人类学习、生活的影响,增强对信息技术发展与未来生活的向往和追求。

二、分析高中信息技术学业水平考试大纲

1、命题依据

高中信息技术学业水平考试,主要以教育部《普通高中技术课程标准(信息技术)(实验)》和各省普通高中信息技术学科教学实施指导意见为命题依据。

2、考试范围

高中信息技术学业水平考试范围一般为必修学分规定的内容,主要包括必修模块和一个选修模块的内容。如贵州省2012年、2013年普通高中信息技术学业水平考试内容为《信息技术基础》必修(粤教版)和《多媒体技术》,根据学生选修情况2014年普通高中信息技术学业水平考试内容为《信息技术基础》必修(粤教版)和《网络技术》。

3、普通高中信息技术学业水平考试能力要求

根据课程标准的要求,学业水平考试的能力要求由低到高分为A,B,C三级标准。

A级只要求学生了解和模仿,比如信息及其特征、信息加工概述、多媒体技术的概念与特征、计算机网络的功能等。

B级要求学生能够理解和独立操作。比如信息的获取过程、网络数据库的检索、图形图像的采集、数字视频的采集、网络通信原理等。

C级要求学生能够熟练操作和应用。比如文件的下载、文本信息的加工、表格信息的加工、Flash简单动画的制作、photoshop cs8图像简单处理、因特网的组建与设置、因特网的接入和使用等。

三 了解普通高中信息技术学业水平考试的形式和内容。

各省对普通高中信息技术学业水平的形式一般为纸质考试和局域网环境下的无纸化上机考试两者之一,采用闭卷形式。下面以贵州省普通高中信息技术学科学业水平考试为例谈谈。

贵州省从2012年开始信息技术学科学业水平考试采用网考的形式,考生使用考试软件,通过上机实际操作进行答卷。试题由计算机从题库中随机抽取智能生成,所有答题过程全部在计算机上进行。考试的内容根据各校的选修情况分为两个部分(必修《信息技术基础》、《多媒体技术》或《网络技术应用》),共150分。

第一考信息技术基础:满分 90分;包括单选题15道,每道4分,共60分;操作题2道,word2003 文档处理和excel2003表格处理,每到15分,共30分。

第二卷考选修:多媒体技术或网络技术应用 满分60分;包括单选题10道,每道4分;操作题1道,多媒体(flash8.0简单动画制作或photoshop8.0图像处理)或网络技术(frontpage2003),该题20分。

结语:我们在应对普通高中信息技术学科学业水平考试时,应当全面了解信息技术学科的教学内容,包括学习的重点、难点,根据教学内容和考试大纲的三个等级要求,学习上有取舍、抓住重点、突破难点。注重理论知识的掌握和思维能力的培养,实际应用能力和创新能力的培养。根据信息技术学籍卡考试形式,考试题型等,注意时间的安排,要有思维、有策略地完成信息技术学业水平考试任务。

篇11

    在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。

    计算机与人工智能

    "智能"源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而 理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machines who thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联 系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了"自动机"理论,把研究 会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。

    人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(artificial intelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以 及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行 情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的"深 蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。

    当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发 展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的 现实应用的基础。90年代以来,人工智能研究又出现了新的。

    我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。

    问: 目前人工智能研究出现了新的,那么现在有哪些新的研究热点和实际应用呢?

    答: ai研究出现了新的,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容 量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。

    智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的 翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显 著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。

    数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据 挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半 结构化和非结构化数据中的知识发现以及网上数据挖掘等。

    主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务, 而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多 主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多 主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。

    问: 您在人工智能领域研究了几十年,参与了许多国家重点研究课题,非常清楚国内外目前人工智能领域的研究情况。您认为目前我国人工智能的研究情况如何?

    答: 我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础 上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技 术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。

    但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是: 课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走; 立项论证时,惯于考虑国外怎么做; 落实项目时,又往往顾及面面俱到,大而全; 再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。

    今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。

     问: 请您预测一下人工智能将来会向哪些方面发展?

    答: 技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展: 模糊处理、并行化、神经网络和机器情感。

    目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来 人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明: 情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。

    人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。

    什么是人工智能?

    人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的 角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。

    ai理论的实用性

    在一年一度at&t实验室举行的机器人足球赛中,每支球队的"球员"都装备上了ai软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白 有些情况下不能死守岗位。尽管现在的ai技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。

    这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和 无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以 大大减少网络堵塞。

    我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。

    未来的ai产品