时间:2022-04-11 02:20:52
序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇多元统计分析论文范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!
中图分类号:G424.21 文献标识码:A 文章编号:
多元统计分析是统计学中的一个重要分支,是收集、处理和分析多维样本数据的统计方法。特别是随着计算机技术的发展,计算软件的普及,多元统计分析已成为分析多元数据的一个重要工具,在自然科学、管理和社会科学、经济领域等都有广泛的应用。
多元统计分析是我校财经管理类本科生大部分专业的一门必修课程,总学时为45学时,其中理论教学时数36学时,实践教学时数时。该课程涉及到许多数学知识,有大量的理论和公式推导,且计算量比较大。同时,本课程的学生为财经管理类的本科生,大多数学基础不好,且学生基础差异较大,部分学生感觉本门课程学习有困难。本文根据本学科的特点和学生的实际情况,结合自己从事多元统计教学的实践和体会,提出几点思考,以供同行参考,共同探讨。
一、重视统计方法的应用
针对财经管理类本科生数学基础较弱的情况,在教学过程中,理论推导部分不必讲解过多,也不应该过分强调复杂的数学证明和公式推导。对于多元统计分析的每一种统计方法,重点阐述它们的统计思想,结合实例介绍涉及到的背景,在实际应用中需要解决什么问题,如何用这种统计来解决这些问题,用了这种统计方法后可以得到什么结果。以及各种方法应用的前提条件、适用范围和局限性等,教学重点从理论转移到实际应用中。为了加深学生对概念的理解,适当做一些数学推导,可以省略复杂的证明。例如在聚类分析的教学中, 借助“物以类聚,人以群分”的道理给出了“就近原则”, 聚类分析的基本思想就容易被学生接受, 然后再逐步引入为了实现就近原则的度量远近的距离及各种具体聚类方法。学生在短时间内就对统计方法有了理解,效果非常明显。
二、重视各种多元统计方法的联系
各种多元统计分析方法虽各自具有不同的特点,但它们彼此之间均有着紧密的联系。在解决实际的问题中,也需要用多种方法结合起来解决问题,对于这一点一定要讲清楚。在聚类分析和判别分析的介绍中,我们介绍了在度量工具选择上两种方法的共同点。同时,聚类分析与判别分析有以下的不同点:①聚类分析可以对样本进行分类,也可以对指标进行分类;而判别分析只能对样本进行判别归类;②聚类分析事先不知道事物的类别,也不知道应分几类;而判别分析必须事先知道事物的类别;③聚类分析直接对样本进行分类,而判别分析根据训练样本建立判别函数,然后对新的观测对象进行判别归类。在实际问题处理中,针对聚类分析归类,判别分析分类的特点,常常将两种统计方法结合使用。在因子分析的基本思想、数学模型、因子载荷矩阵的估计方法、因子得分等几个环节的学习中, 我们随时将主成分分析的相关内容拿来与之比较分析, 分析了两种方法在模型、参数唯一性、取舍因子等问题上的不同与使用环境等方面的共同之处, 学生不仅对因子分析有了深入理解,而且对主成分分析的内容有所复习,更容易实现对着两种统计方法的掌握。
三、重视统计软件地使用
各种多元统计方法解决的是大量多维数据的分析问题,自然离不开复杂数据的计算,所以在教学中必须重视统计软件的学习,完成大量的计算过程。SPSS软件简单易学,操作方便、功能强大、应用广泛,可以进行大部分多元统计分析方法的操作,基本能满足教学和实践上计算的需要。且在多元统计分析课程之前,学生已学过SPSS课程,对软件的应用也基本掌握。在教学过程中,当介绍每一种统计方法的基本思想、原理后,先对教材上的已有详细步骤和结果的例题进行操作,使学生将统计软件操作结果与其进行比较。进一步要求学生针对某一专题或结合自身专业,对某一实际问题收集数据,整理数据,利用软件进行具体分析操作,得到自己需要的结果。但是在教学过程中,需要让学生知道统计软件只是一种分析工具, 重点还是掌握各种统计分析方法的基本原理和科学选用上。同时,结合自己的一些研究课题,与学生一起探讨、研究,培养学生初步的科研能力。
四、合理制定考试方式和内容, 科学评定学生成绩
针对多元统计分析课程的特点,本门课程考核不仅要注重基本知识点的掌握,也要包括各种统计方法的理解、分析和应用。在考试的方式上,可以采用闭卷考试,开卷考试和课程论文相结合,从而多角度、全方位对学生的学习成绩给予综合评价。通过以上多种方式,考察学生理解能力、跨学科综合能力、解决实际问题的能力及创新能力。在考试的内容上,闭卷考试着重考查学生对各种统计方法和理论知识的掌握程度,并对量不大的数据进行处理;开卷考试以学生上机操作的方式进行,着重考查学生利用统计软件处理多元数据的熟练程度,以及对统计软件输出结果进行分析判断和解释说明的统计素养;课程论文侧重于考查学生运用多元统计方法解决实际问题的能力及创新能力。总成绩则有闭卷考试成绩(占60%)、开卷考试(占20%)和课程论文成绩(占20%)三部分组成,从而科学评价学生对本门课程的掌握情况。
多元统计分析作为多元数据处理的一个重要工具, 必将随着社会的需要而不断的有广泛的应用。多元统计分析教学模式的选择必须根据教学的需要和学生的实际接受水平发生改变。而作为教师,需要不断地总结经验,完善自己的教学,不懈努力,传授给学生正确的统计思想, 实用的统计方法和综合的统计能力。
参考文献:
1何晓群. 多元统计分析[M]. 中国人民大学出版社,2012.
2任雪松,于秀林. 多元统计分析[M]. 中国统计出版社,2011.
3苏金明,傅荣华等. 统计软件SPSS系列应用实战篇[M]. 北京: 电子工业出版社,2002.
4张文彤,邝春伟.SPSS统计分析基础教程[M]. 北京:高等教育出版社,2011.
5吕洁. 多元统计分析课程教学探讨[J].中国成人教育,2007 ( 8): 153- 154.
2012年12月份,我国生产化学农药原药(折百)34.2万吨,同比增长9.97 %。2012年1-12月,全国的产量达35
>> 2014年全国化学农药原药产量情况 统计局:2013年11月我国化学农药产量同比增长2.79% 2012―2015年我国煤矿瓦斯事故统计分析 2008年~2012年我国高校档案学研究生统计分析 2000—2012年:我国教育技术相关著作统计分析 1998年-2008年我国网球硕博论文统计分析 我国媒介融合研究统计分析 我国能源结构的统计分析 近30年我国综合档案馆研究论文统计分析 2002年~2011年我国“弃档”现象研究论文的统计分析 2005年~2015年我国档案安全应急预案研究文献统计分析 《档案管理》2012年载文统计分析 2012年我中心门诊使用抗高血压药物统计分析 1985~2007年我国国际竞争力论文的统计分析 19877―20166年我国档案法规研究期刊论文统计分析 2013年10月中国化学农药产量同比下调6.08% 基于多元统计分析的我国各省级区域经济分析 USPTO中我国专利引用状况的统计分析 FDI与我国经济增长之间关系的统计分析 我国入境旅游人数统计分析与模型预测 常见问题解答 当前所在位置:中国 > 科技 > 2012年我国化学农药原药产量统计分析 2012年我国化学农药原药产量统计分析 杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠! document.write("作者: 本刊编辑部")
申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。 2012年12月份,我国生产化学农药原药(折百)34.2万吨,同比增长9.97 %。2012年1-12月,全国的产量达354.9万吨,同比增长19%。 从各省市的产量来看,2012年1-12月,江苏省化学农药原药(折百)的产量达105.58万吨,占全国总产量的29.75 %。紧随其后的是山东省、浙江省和湖北省,分别占总产量的23.25 %、8.47 %和8.34 %。 杀虫剂原药产量同比下降11.96% 2012年12月份,我国生产杀虫剂原药7.92万吨,同比下降29.36 %。2012年1-12月,全国的产量达81.34万吨,同比下降11.96 %。 从各省市的产量来看,2012年1-12月,湖南省杀虫剂原药的产量达24.93万吨,占全国总产量的30.65 %。紧随其后的是江苏省、山东省和湖北省,分别占总产量的29.53 %、9.22 %和8.94 %。 杀菌剂原药产量同比下降7.08 % 2012年12月份,我国生产杀菌剂原药14383.11 吨,同比增长1.86 %。2012年1-12月,全国的产量达143893 吨,同比下降7.08 %。 从各省市的产量来看,2012年1-12月,江苏省杀菌剂原药的产量达60458.42 吨,占全国总产量的42.02 %。紧随其后的是浙江省、安徽省和宁夏回族自治区,分别占总产量的13.92 %、9.39 %和8.74 %。除草剂原药产量同比增长42.55% 2012年12月份,我国生产除草剂原药16.27万吨,同比增长40.74%。2012年1-12月,全国除草剂原药的产量达164.79万吨,同比增长42.55%。 从各省市的产量来看,2012年1-12月,山东省除草剂原药的产量达67.13万吨,同比增长88.65%,占全国总产量的40.74%。紧随其后的是江苏省、浙江省和湖北省,分别占总产量的20.41%、10.27%和9.18%。(摘编自《中商情报网》)
一、引言
随着数理统计理论的发展,作为它的分支的“多元统计分析方法”在近20年越来越受到人们的重视。这不仅是因为很多事情都是带有随机因素,而且在具体分析问题的时候,人们需要考虑的因素不止有一个。比如在购物的时候,我们评价商品并不是仅仅看其价格,还要关注质量、保修期等多方面的因素。在学校里,评价一个学生也是至少需要“德、智、体”三方面的指标。多元统计分析就是用统计的方法分析这种带有多指标的随机性问题。上述的例子所涉及的指标其实并不多,但更多的时候会遇到很多指标,如考察一个企业,需要了解其规模、产量、产值、税收、员工数、利润等,如果我们关注所有的指标就会大大增加分析的复杂性,而且也不宜抓住主要的因素。因此有必要对这些原始的指标数据进行降维,亦即用较少的新指标来代替原始指标,这就是主成分分析与因子分析在解决问题时所要体现的思想。可以说,出于数据降维的目的它们是没有区别。
二、具体实例分析
但是在新生成的指标的解释方面,它们还是有较大不同的。首先看一下两种方法的数学模型。主成分分析是考虑原来的指标的线性组合,把原始指标的线性组合叫做主成分。从这一点可以看出,主成分其实就是原来指标的压缩综合。而因子分析模型则是把原始指标表示成因子的线性组合(如果姑且不去考虑随机扰动的因素),也就是说因子分析的目的是要找出影响所有原始指标的内在因素。因此尽管两种方法都是对原始数据进行降维,得到新的指标,但是在对新指标的解释是有不同的。下面分析一个具体例子。该例通常出现在统计教科书中因子分析一章,但本文从主成分分析和因子分析两方面同时对其进行剖析。
考察某校学生的学习成绩状况。随机抽取了30个学生,关注起数学、物理、化学、语文、历史、英语六门课程的成绩。故形成了如下的30行、6列的原始数组。我们需要从中提炼出1,2个新指标。
通过MATLAB软件中的主成分分析与因子分析程序,可以看到通过两种方法的数据降维处理后按照累计贡献率均提炼出了两个新的指标,它们都是从上述的原始二维数组出发,计算其协方差距阵的特征值与特征向量,因此很容易搞不清楚所得到的两个新变量到底是主成分变量,还是因子变量。其实,我们此时回顾一下前文中提到的数学模型就清楚了。主成分分析是原始变量的线性组合,结合此例,即为所获得的两个新指标是原始指标的综合。又注意到原始变量前的组合系数(也叫作载荷)大小,不难发现,在其中的一个新指标中数学、物理、化学、三科占的比重比较大,因此可以把该综合指标形象地称为“理科”主成分;而在另一个新指标中语文、历史、英语三科占的比重比较大,因此可以把该综合指标形象地称为“文科”主成分。此时再考虑因子分析的模型。如前文所讲,原始变量表示成了因子的线性组合。结合此例,即数学、物理、化学、语文、历史、英语这原六个指标表示成了两个新的指标的线性组合。考虑到因子的组合系数,发现在数学、物理、化学这三科的线性表示中一个因子的组合系数比较大,而另一个比较小,因此可以把所占分量较大的那个因子形象地理解成“理性思维”因子,同样的道理可以把另一个新指标理解为“文性思维”因子。
三、总结
从此例可以看出,虽然主成分分析与因子分析都是从原始数据的协方差矩阵(有时是相关系数阵)出发,计算特征值与特征向量,按照累计贡献率大于85%的原则确定新的指标个数。但是为了避免搞混两种方法,在解释新的指标时应回馈到各自的模型上面来。即:按照主成分分析理论,新指标仅仅是原始指标的简单汇总,如果想用较少的几个变量替代原来的变量则用主成分分析;而对于因子分析,新指标则是对所有原始指标皆有影响的那些公共因子,所以当需要寻找潜在的影响要因时,倾向于用因子分析。明白了这一点,对新指标的解释也就变得顺理成章了。
【参考文献】
[1]高惠璇 应用多元统计分析 2005
[2]李静萍 谢邦昌 多元统计分析方法与应用 2008
[3]李卫东 应用多元统计分析 2008
[4]陆恒芹 苏勤 陈丽荣 女性旅游者行为特征分析及其动机研究―以西递、宏村为例 2006
1.遵照教育部对经济统计学专业的要求
严格遵照教育部对经济统计学专业的要求。主干学科为理论经济学、应用经济学、统计学,其中核心课程为西方经济学(微观经济学、宏观经济学),计量经济学,财政学,货币金融学,会计学,经济统计学,国民经济统计学,概率论与数理统计,抽样技术与应用,应用时间序列分析。实践性教学环节包括实验课程(含基本统计分析软件应用、统计实务模拟等),社会实践(含经济社会统计调查、统计工作实习等),科研和论文写作(含毕业论文、学年论文、科研实践等)。专业实验包括计算机基本技能实验、统计分析应用软件实验、经济计量分析软件实验、数据挖掘技术与应用实验。
2.参照其他院校的培养方案和课程设置
它山之石,可以攻玉。我们选择了部分具有代表性的财经院校(如上海财经大学、中央财经大学、东北财经大学、西南财经大学、中南财经政法大学、北京工商大学、上海金融学院、 河南财经大学、浙江财经学院和山东工商学院)和综合类院校(如浙江大学、吉林大学、南京大学和云南大学)以及师范类院校(如北京师范大学、华东师范大学、东北师范大学、南京师范大学)作为参照院校。通过比较分析得出,在统计学经济统计、商务统计、金融统计方向中,财经类院校主要突出经济学课程,招生偏重理科生。综合性院校和师范类院校主要课程为理学类,招生偏重理科生。
综上所述,经济统计学专业应培养适应信息化社会需要,熟练掌握现代统计理论和经济数量分析方法,具有扎实的统计学、经济学和金融学基础,能熟练应用计算机软件处理统计数据的复合型高素质经济管理统计人才。学生毕业后可在政府部门、金融机构、外资企业和大中型公司等从事经济统计分析、管理咨询、市场调研和商务数据分析等管理工作。
3.与学院培养方案形式统一
新制订的培养方案和整个学院的形式保持了统一,以便于教务人员管理工作的开展。
二 经济统计学培养方案专业课的设置
经济统计学的培养目标与基本规格和招收对象为理科生,设置了保险精算、金融统计和商务统计三个方向。学生修满培养方案规定的学分并达到学位授予要求者,授予经济学学士学位。
由于经济统计学对统计学和经济学知识的要求较高,我们提高了课程总学分和总学时,注重主干学科和专业课程的开课顺序和教学周学时分配,强化实训实践课程,实行理论和实践并行。
培养方案确定了5门学科基础课程,分别为宏观经济学、微观经济学、C语言程序设计、概率论与数理统计、管理学。确定了5门专业基础课程,分别为基础会计学、经济统计学、货币金融学、财政学、计量经济学。确定了9门专业核心课程,分别为国民经济统计学、多元统计分析、统计预测与决策、抽样技术与应用、应用时间序列分析、金融统计学、市场调查与分析、投资学、数据挖掘。
一、数据统计分析的内涵
数据分析是指运用一定的分析方法对数据进行处理,从而获得解决管理决策或营销研究问题所需信息的过程。所谓的数据统计分析就是运用统计学的方法对数据进行处理。在实际的市场调研工作中,数据统计分析能使我们挖掘出数据中隐藏的信息,并以恰当的形式表现出来,并最终指导决策的制定。
二、数据统计分析的原则
(1)科学性。科学方法的显著特征是数据的收集、分析和解释的客观性,数据统计分析作为市场调研的重要组成部分也要具有同其他科学方法一样的客观标准。(2)系统性。市场调研是一个周密策划、精心组织、科学实施,并由一系列工作环节、步骤、活动和成果组成的过程,而不是单个资料的记录、整理或分析活动。(3)针对性。就不同的数据统计分析方法而言,无论是基础的分析方法还是高级的分析方法,都会有它的适用领域和局限性。(4)趋势性。市场所处的环境是在不断的变化过程中的,我们要以一种发展的眼光看待问题。(5)实用性。市场调研说到底是为企业决策服务的,而数据统计分析也同样服务于此,在保证其专业性和科学性的同时也不能忽略其现实意义。
三、推论性统计分析方法
(1)方差分析。方差分析是检验多个总体均值是否相等的一种统计方法,它可以看作是t检验的一种扩展。它所研究的是分类型自变量对数值型因变量的影响,比如它们之间有没有关联性、关联性的程度等,所采用的方法就是通过检验各个总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。(2)回归分析。在数据统计分析中,存在着大量的一种变量随着另一种变量的变化而变化的情况,这种对应的因果变化往往无法用精确的数学公式来描述,只有通过大量观察数据的统计工作才能找到他们之间的关系和规律,解决这一问题的常用方法是回归分析。回归分析是从定量的角度对观察数据进行分析、计算和归纳。
社会科学的实证研究在应用统计学时,统计分析是其关键环节,资料性质分析、资料类型的判断、统计方法的选择等各个环节都应把握好,否则,其分析结果将是没有意义的。本文拟通过对社会科学实证研究论文中应用统计分析方法出现的问题,从描述性分析、定量资料的统计分析、定性资料的统计分析、相关与回归分析等方面进行解析。
一、描述性分析问题
在社会科学实证研究中,一般首先要对社会调查数据进行描述性统计分析,以发现其内在的规律性,再选择进一步的分析方法。描述性统计分析要对调查总体所有变量的有关数据做统计性描述,主要包括数据的频数分析、集中趋势分析、离散程度分析、分布形态以及一些基本的统计图形。
描述性统计分析虽然较为简单,但如果对某个事件或某种现象的描述不清楚或存在偏差,那么其后的所有分析都将值得怀疑,而描述的偏差可能会引起公众或学术界对某些社会现象的误解,甚至误导政府决策。
1.均值的误用
均值是用于描述样本集中趋势的最常用指标,但应注意,对于正态或近似正态的对称分布样本,它是较好的指标,一般与离散趋势指标中的标准差一起描述数据资料(即形式);而对于偏态分布的样本,则常用中位数来描述集中趋势,一般与离散趋势指标中的四分位数间距一起描述数据资料(即形式),究其原因是均值容易受到极端值的影响。
对于两个分布完全不同的样本,可能会得到相同的均值,因此均值在某种程度上抹杀了样本内部的差异,而往往这种内部差异正是需要进行深入研究或应当引起人们注意的。为了弥补均值的这种缺陷,一般在报告均值的同时,也应该报告标准差,或用直方图或散点图的形式描述分布,以展示群体内部的差异。
2.绝对数的误用
因为社会调查研究比较容易得到大容量的样本,所以对任何小概率事件,用绝对数报告都会出现较大的数字,单纯对绝对数的强调往往会产生误解。比较合理的方式一般是在报告某事件绝对数的同时,给出该事件的发生率或占研究样本的比例。
3.相对数的误用
相对数常用于描述定性资料的内部构成情况或相对比值或某现象的发生强度,一般有比与率两种形式。虽然比与率的计算形式是相同的,即两个绝对数之商乘以100%,但它们的含义是不同的。率用于反映某种事物或现象发生的强度,而比则用于反映部分与整体或某一部分与另一部分之间的关系。当数据的比较基础相差悬殊,用绝对数表述没有可比性时,就要借助于相对数。
应用相对数也容易出现一些问题,如:百分比与百分率的混用;当分母很小时,只计算百分比或百分率,而没有报告样本量;当比较两个或多个总体率时,没有考虑到各总体对应的内部构成情况是否一致,而直接比较等。
例如在报告流动人口犯罪问题时,给人的印象往往是流动人口犯罪率高于常住人口,其实是忽视了流动人口的年龄和性别构成与常住人口完全不同,且青年男性是犯罪率较高的人群,这样对两个不同群体的比较往往会导致错误的结论。
二、定量资料的统计分析问题
定量资料的统计分析是指所观测的结果变量是定量的,而且希望考察定性的影响因素取不同水平时,定量观测结果的均值之间的差别是否有统计学意义。定量资料的统计分析在统计学应用中占有很大的比重,出现的误用也比较多。
正确选择定量资料统计分析方法的关键有两点:一是正确判断统计研究设计的类型;再是检验定量资料是否满足“独立性、正态性及方差齐性”的前提条件[1]。前者要求使用者对统计研究设计的类型较为熟悉,后者则需要进行预分析,可适当借助于统计分析软件。根据前提条件是否满足来决定用参数假设检验或方差分析,还是用非参数检验方法,进而根据对统计研究设计类型的判断,确定采用具体的统计分析方法。
对定量资料作统计分析时,常犯的错误有:
1.不管统计研究设计类型,盲目套用t检验或单因素方差分析;
2.不验证“独立性、正态性及方差齐性”前提条件,而直接应用参数检验法;
3.将多因素设计定量资料人为拆成多个成组设计定量资料,采用t检验法;
4.将多因素设计定量资料用单因素多水平方差分析解决,或用一元分析替代多元分析等。
三、定性资料的统计分析问题
定性资料的统计分析是指观测结果为定性变量的统计处理问题。定性资料的统计分析在社会科学研究中的应用也是很广泛的,通常根据影响观测结果的原因变量性质分为三种情况:
1.原因变量都为定性变量,此类资料就是通常理解的定性资料。常用的统计分析方法有:检验、秩和检验或Ridit分析、Spearman秩相关分析、线性趋势检验、一致性检验(也称Kappa检验)、加权检验、对数线性模型等。
2.原因变量中既有定性变量,又有定量变量。这类资料的统计分析通常有两种处理方法:一是结合专业知识先将定量的原因变量离散化,使其转化为定性变量,然后采用上面3.1的统计方法处理;二是先对定性的原因变量,采用哑变量技术进行处理,转化为多个二值变量,赋予0或1值,然后采用Logistic回归分析方法或多值有序变量Logistic回归分析处理。
3.原因变量全部为定量变量。这类资料的分析可以直接采用Logistic回归分析方法或多值有序变量Logistic回归分析处理。
定性资料的最常用表达形式是列联表,列联表有多种类型,如横断面设计的四格(或称2x2)列联表、队列研究设计的四格列联表、配对研究设计的四格列联表、双向无序的R×C列联表、单向有序的R×C列联表、高维列联表等,不同类型所用统计方法也不同,所以处理这类资料的关键是分辨出列联表的类型,从而选择相应统计分析方法。
在社会科学研究中,定性资料的统计分析常犯的错误主要就是列联表的误判,从而错误的选用统计方法。
四、相关与回归分析问题
相关分析是研究变量之间的相互关系,常局限于统计描述,较难从数量角度对变量之间的联系进行深入研究;回归分析则是研究变量之间的依赖关系,可实现对自变量进行控制,对因变量进行预测,及对随机变化趋势进行适当修匀。
相关分析可用于对定类、定序、定距及定比等尺度的各类资料进行定量描述,但各类资料的计算公式是不同的,所以应用时,需要判明资料的类型;而回归分析则要根据因变量性质的不同,选用不同的回归分析方法,一般可分为两类:一是因变量为连续型变量,具体的,当为非时间性的连续型变量时,可用线性回归分析、多项式回归分析、非线性回归分析等;当为时间变量时,可用COX半参数回归分析、指数分布回归分析及威布尔回归分析等;当为随时间变化的连续型变量时,则需要利用时间序列分析。二是因变量为离散型变量,需要利用Logistic回归分析、对数线性模型分析及多项Logit模型分析等。
在社会科学研究中,相关与回归分析的应用非常广泛。但应用时也经常出现一些错误:
1.没有结合问题的专业背景和实际意义,就进行相关与回归分析。其结果有时可能是莫名奇妙的,可能出现所谓的虚假相关。
2.对于较简单的线性相关与回归分析,不注意应用条件,盲目套用。一般地,Pearson相关分析要求两变量都是随机变量,且都服从或近似服从正态分布,若不满足条件,应采用其它相关分析法,如Spearman相关分析等。而线性回归分析则要求因变量必须是随机变量,且服从或近似服从正态分布,在回归分析前,先要进行统计检验,证实两变量的显著相关性,再进一步进行回归分析才有意义。
3.只求得相关系数或回归方程,而不进行参数假设检验就下统计分析结论。因为相关系数或回归方程都是由样本数据求得的,是否具有统计学意义,必须通过其相关参数的假设检验来判定。
4.多元回归分析策略的错误。在社会科学实证研究中,对多元回归分析的应用,不少人采取的策略是先用单变量分析,得到有统计学意义的多个变量,再将它们引入回归方程进行多变量分析,用逐步回归法进行筛选,从中选出有统计学意义的变量,这种分析策略是不正确的。因为自变量之间可能存在不同程度的交互作用,在单变量分析中无统计学意义的变量并非在多元回归分析中也没有意义。正确的处理方法应该是先综合分析各种变量之间的作用、实际意义及关系,有些可作为控制变量(如性别、年龄等),将经过初步筛选的所有变量代入回归方程进行分析,再采用逐步回归方法,必要时可多用几种筛选变量的方法,同时要注意自变量间的交互作用,进行综合分析,这样才能得到较为可靠的结果。
参考文献:
[1]王在翔:社会统计理论与实践[M].青岛:中国海洋大学出版社,2008
[2]胡良平等.医学统计学基础与典型错误辨析[M].北京:军事医学科学出版社,2003.148-239
关键词:医学论文
1.统计研究设计:应交代统计研究设计的名称和主要做法。如调查设计(分为前瞻性、回顾性还是横断面调查研究),实验设计(应交代具体的设计类型,如自身配对设计、成组设计、交叉设计、析因设计、正交设计等),临床试验设计(应交代属于第几期临床试验,采用了何种盲法措施等);主要做法应围绕4个基本原则(重复、随机、对照、均衡)概要说明,尤其要交代如何控制重要非试验因素的干扰和影响。
2.资料的表达与描述:用x±s表达近似服从正态分布的定量资料、用M(QR)表达呈偏态分布的定量资料;用统计表时,要合理安排纵横标目,并将数据的含义表达清楚;用统计图时,所用统计图的类型应与资料性质相匹配,并使数轴上刻度值的标法符合数学原则;用相对数时,分母不宜小于20,要注意区分百分率与百分比。
3.统计分析方法的选择:对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析;对于定性资料,应根据所采用的设计类型、定性变量的性质和频数所具备的条件以及分析目的,选用合适的统计分析方法,不应盲目套用χ2检验。对于回归分析,应结合专业知识和散布图,选用合适的回归类型,不应盲目套用简单直线回归分析,对具有重复实验数据的回归分析资料,不应简单化处理;对于多因素、多指标资料,要在一元分析的基础上,尽可能运用多元统计分析方法,以便对因素之间的交互作用和多指标之间的内在联系作出全面、合理的解释和评价。
4.统计结果的解释和表达:当P<0.05(或P<0.01)时,应说对比组之间的差异具有显著性(或非常显著性)的意义,而不应说对比组之间具有显著性(或非常显著性)的差别;应写明所用统计分析方法的具体名称(如:成组设计资料的t检验、两因素析因设计资料的方差分析、多个均数之间两两比较的q检验等),统计量的具体值(如:t=3.45,χ2=4.68,F=6.79等),应尽可能给出具体的P值(如:P=0.0238);当涉及到总体参数(如总体均数、总体率等)时,在给出显著性检验结果的同时,再给出95%置信区间。
关键词:医学论文
1.统计研究设计:应交代统计研究设计的名称和主要做法。如调查设计(分为前瞻性、回顾性还是横断面调查研究),实验设计(应交代具体的设计类型,如自身配对设计、成组设计、交叉设计、析因设计、正交设计等),临床试验设计(应交代属于第几期临床试验,采用了何种盲法措施等);主要做法应围绕4个基本原则(重复、随机、对照、均衡)概要说明,尤其要交代如何控制重要非试验因素的干扰和影响。
2.资料的表达与描述:用 x±s表达近似服从正态分布的定量资料、用M(QR)表达呈偏态分布的定量资料;用统计表时,要合理安排纵横标目,并将数据的含义表达清楚;用统计图时,所用统计图的类型应与资料性质相匹配,并使数轴上刻度值的标法符合数学原则;用相对数时,分母不宜小于20,要注意区分百分率与百分比。
3.统计分析方法的选择:对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析;对于定性资料,应根据所采用的设计类型、定性变量的性质和频数所具备的条件以及分析目的,选用合适的统计分析方法,不应盲目套用χ2检验。对于回归分析,应结合专业知识和散布图,选用合适的回归类型,不应盲目套用简单直线回归分析,对具有重复实验数据的回归分析资料,不应简单化处理;对于多因素、多指标资料,要在一元分析的基础上,尽可能运用多元统计分析方法,以便对因素之间的交互作用和多指标之间的内在联系作出全面、合理的解释和评价。
4.统计结果的解释和表达:当P<0.05(或P<0.01)时,应说对比组之间的差异具有显著性(或非常显著性)的意义,而不应说对比组之间具有显著性(或非常显著性)的差别;应写明所用统计分析方法的具体名称(如:成组设计资料的t检验、两因素析因设计资料的方差分析、多个均数之间两两比较的q检验等),统计量的具体值(如:t=3.45,χ2=4.68,F=6.79等),应尽可能给出具体的P值(如:P=0.0238);当涉及到总体参数(如总体均数、总体率等)时,在给出显著性检验结果的同时,再给出95%置信区间。
关键词:多元统计分析 中药成分分析
中药物质基础的阐明和科学质量控制方法的建立是中药现代化和国际化的关键,在化学计量学中,多元统计分析方法得到了很好的应用,通过优化了化学量测过程,提高分析效果,应用统计分析方法及其他数学方法和计算机软件的应用对其数据进行整理,已较好的阐明了中药物质成分,结构与其性能之间的复杂关系。
一、应用现状
1.1方法
在中药成分分析中,多元统计分析方法如多元回归,多元相关分析,逐步回归分析,最大似然法,判别分析,聚类分析和主成分分析,利用电子计算机能迅速而大量地处理实验数据,还广泛采用了蒙特卡洛(Monte Carlo)统计模拟法,都能在某一特定方面很好的说明其成分,但尚未有统一理论支撑整个体系,也是国内着力于建立中成药数据库的缘由之一。要进一步定性定量的确定中药成分,并很好的分析中药成分还需不断努力。
在应用中,应用最多的为多元线性回归和Logistic回归方法,其次是通径分析,因子分析和聚类分析的运用较少,比如风险模型,典型相关,MCA分析和Probit分析。
1.1.1成分提取
在对中药复方有效成分的整体提取方法,指纹图谱条件优化及定量评价指标,以及基于药理活性的组方条件优化的基础上,化学模式识别方法引入中药分析体系,模式识别,指通过相关软件等用数学方法来实现模式的自动处理和判别,模式识别可大致分为用监督模式识别(判别分析方法),是实现规定分类的标准和种类的数模,并且通过大批已知样本的信息处理找出规律,再预报未知样本的类型,如贝叶斯法(Bayes)逐步判别分析方法,人工神经网络判别法等,无监督模式识别(聚类分析方法),是对一组尚无明确分类的样本,根据它们所变现的变量特征,按相似程度的大小加以归类,最终通过信息处理找出合适的分类方法并实现样本的分类,如系统聚类分析,模糊聚类分析等以及基于特征投影的降维显示方法,另外还有一类基于特征投影的降维显示方法,如主成分分析方法,基于偏最小二乘法的降维方法等,中药的化学模式识别方法可以从复杂的化学测量数据出发,进一步揭示复杂化合物之间的隐藏规律,为中药整体研究提供十分有用的信息。
1.1.2质量控制
在中药复方质量控制方面,近年来,有监督的模式识别和无监督的模式识别往往联合起来使用,即当某中药方剂的总体质量分类不清楚时,可先用聚类分析对原来的样品进行分类,然后再用判别分析建立判别式以对新样品进行判别。
1.1.3药效检验
在化学计量中运用多变量统计过程控制(multivariate statistical process control,MSPC) 方法来处理中药成分组成,在中药分析中,结合对无知复杂多组分进行同时定性定量分析的方法,连用色谱仪器等,包括HPLC-DAD.CE-DAD(毛细管电泳二极管阵列联用仪),HPLC-MS,HPLC-IR,GC-MS.GC-IR等因其将分离与分析技术集于一体,已有很大突破,目前国内在中药成分分析中,运用了在中药化学成分研究的手段方面,如薄层色谱,气相色谱,高效液相色谱,紫外光谱,红外光谱等已得到普遍使用,还包括超临界色谱,高效逆流色谱,色谱质谱连用技术(GC/MS、HPLC/MS),核磁共振(NMR)指纹图谱,x-射线衍射指纹图谱等。其中产生大量的数据,有关研究人员运用数学中多元统计分析方法对其分析,得到相关结论,进而对药效进行更有效的分析。
1.1.4组分分析
借助各类分析仪器以及光谱色谱联用手段,可以再较短的时间内得到大量的多元性化合物信息,该过程所用到的具体方法有聚类分析,主成分分析以及偏最小二乘法,判别式分析法等,中药药效,由定量构效关系到定量组效关系研究
1.2数据处理的应用实例
在对药材产地区分和鉴别研究方面,徐永群等在黄苓的红外光谱的指纹图谱基础上,采用主成分分析法,对多个产地进行了聚类分析。
王继国等分析中药血竭样品的高效液相色谱中,把指纹图谱信息进行数据处理时,用重叠率与相关系数两个参数,从两个方面定量地对图谱进行了相似性评价,在此基础上用系统聚类分析法定性地对样品进行了分类和鉴别,建立了一种相对完善的中药血竭的化学模式识别技术。
杨红娟等对金银花的种类进行了模式识别研究,利用高效液相色谱分析获得金银花的化学信息,并进行了系统聚类分析,同时用微生物法进行抑菌活性测定,用多重线性回归揭示化学信息与药理指标之间的关系。
孙丽新等用典型相关分析对获得反映样品整体化学特征的数据做了处理,并运用聚类的方法将样品分类,得到效果良好的质量控制方法。
周立东等提出在天然药物演技中建立定量组效关系,用以解决中药复杂成分的化学组成与生物活性之间的关系问题,在中药的多变量的化学祖坟空间和中药的多变量空间之间建立起定量的关系,在多元统计分析中,如回归分析,聚类分析以及因子分析西欧提供了操作方法,
二、存在的主要问题
统计方法的选择在一定程度上取决于变量的测度水平,多元统计分析,自变量中包括名义变量的最多,自变量全部为间距测度的很少,多元统计分析方法中序次测度变量和名义测度变量的处理方法一样,所以一般并不加以区分,序次测度变量作为名义测度变量来用,把二者合成为分类变量,本次研究的论文数据中应用多元统计方法时大多数的分析中是分类变量。
2.1方法使用错误
在多元统计分析方法的应用中,如通经分析等存在一些错误,通径分析是建立一组线性回归方程,因此对变量的要求和多元线性回归一样,多元线性回归要求因变量必须为间距测度或以上的变量,自变量可以使分类变量,但当自变量中有分类变量时,必须做虚拟变量回归,而不是普通的线性回归。
2.2数据的评价和检验
对实验数据处理的最终评价是要反映该药效的最好方式,即数据在多大程度上能很好解释了因变量的间的关系,每一种统计分析方法都有自己的数据评价指标和方法。
三、总结
化学计量学提供了一整套区别于传统复方研究的思路,在中药化学,质量控制,药效检验,组方分析,代谢组学以及建立中药数据等各个领域都已有了初步的应用和发展。多元统计分析方法作为数学数据分析中的主要分析方法,虽在中药分析方法中应用存在少数问题,但其应用前景及意义极其乐观。(作者单位:沈阳师范大学)
参考文献:
[1]梁逸曾.化学计量学用于中医药研究.长沙:化学计量学与传感技术研究所,1998.
[2]罗国安.中药中成药现代化进程[M].北京:中成药出版社,2000.
[3]甘师俊,李振吉.中药现代化发展战略[M].北京:科学技术文献出版社,1998.
[4]张敏,吕华瑛.中药成分分离新技术及应用[M].山东:山东中医杂志,2005.
2教学变革的尝试
由于课程的实用性和重要性,学生普遍对数理统计课程比较感兴趣。如何调动学生的主观能动性,变“被动灌输”为“主动探索”,在有限的课时内学习较多的统计知识呢?我们教学变革主要采取如下措施。
2.1教学内容的调整为了避免重复学习,我们对原来本科时已经学习的统计量与抽样分布、参数估计这部分内容只简单复习,温故知新,不再细讲。而对目前生物医学工程中应用较普及的方差分析、回归分析,我们补充了生物医学方面的实例,运用软件进行统计分析,并对运行结果详细讲解。对于教材未介绍的非参数检验和实验设计部分,补充几种常见的统计方法。对于较复杂的多元统计和现代统计学部分,我们引入PBL教学模式,通过分组、问题探究、成果汇报、反思和完善几个步骤,完成学习内容。
2.2教学方式的改进在课程的教学中,我们尽量做到深入浅出,回避复杂的推导、运算和证明,强调对统计思想的理解以及统计方法的运用,同时注重和统计软件的结合。统计从某种意义上说是与数据打交道的科学,没有实际数据的统计分析,不利于学生对统计方法的理解和应用。教学中如果仍然当成数学课程,注重统计理论中定理和公式的推导演算,而缺乏实际的数据分析训练,学生就无法对统计的广泛应用性及重要性有深刻的体会,也不利于保持和提高他们的学习兴趣。我们补充了生物医学方面的实例,通过数据分析,提高他们对统计方法的实际应用能力,也为后续PBL教学的顺利开展做准备。大部分学生在本科阶段已学习Matlab软件,而且工科学生计算机应用能力较强,因此我们要求学生自学一门统计软件(如SPSS、R等)或使用Mat-lab,对所有的实例在软件中实现数据分析。软件输出的是数值或图表,并没有详细的解释、分析和结论,学生必须结合数据背景知识,应用所学统计方法,进行分析推断,最后给出结论和合理的解释。
2.3考核方案的变革注重平时考核,淡化期末考试。考试不是最终目的,只是促进学习而已。因此,成绩是对学生学习情况的全面评价,不仅包括教材知识点的掌握情况,还有自主学习和实际应用的能力。我们将PBL案例分析的评价和期末考试的成绩各设置为50%的比例,鼓励学生自主学习,提高实际数据分析的能力。
3结合PBL教学模式
统计学的飞速发展要求研究生掌握必备的统计基础知识外,能够进行知识的自我更新,具有不断学习现代统计新知识的能力。PBL教学模式在提高学生分析问题、解决问题的能力,培养学生成为自主学习者、终身学习者等方面已被广泛认同。虽然生物医学工程专业研究生基础知识比较扎实,但统计学的发展以及软件的学习交叉,要想学好这门课程并不轻松。在研究生教班开展PBL教学的有利条件是:①教班人数较少,分组进行问题探索可以实现。②学生对数理统计课程比较感兴趣,积极性较高。③现代统计学和计算机科学紧密联系,但医学工程学生计算机应用能力较强,在统计软件的学习和编程方面具有优势。④教研组在数模竞赛培训和本科毕业设计中积累了一些素材,可以将内容完善成PBL问题。我们引入PBL教学模式,进行了初步探索。
3.1前期准备推荐一些统计应用的网站和书籍。简单介绍前沿的方法和知识,补充回归、相关、时间序列分析以及实验设计等内容,对于随机模拟、MC-MC方法也举例说明。教师将原先积累了一些实例设计成若干问题,让学生进行选题,组成学习小组(每组5-8人),确定分工。我们将多元统计分析和传染病预测的案例编写成4个问题,提前半个月交给学生,等他们分组确定后,分别给予一定指导。
3.2问题探究小组成员分工合作,查找文献、学习算法,围绕选定的问题进行准备。通过交流和讨论,将各自学到的知识进行整合,进而运用这些知识重新分析上一阶段提出的问题,思考并提出解决方案。最后,对问题形成一个附有详细统计算法和计算结果的论文报告交给教师。
中图分类号 G642.0 文献标识码 A 文章编号 1007-7731(2013)15-148-02
生物统计学是数理统计原理和方法在生物学中的应用,不仅在生命科学领域、而且也在其他学科领域中得到广泛应用,是一门工具学科[1]。生物统计学的理论性和实践性均较强,涉及的基本原理、公式和概念较多,需有一定的数学基础和逻辑推理能力才能学好,相对于其他专业课程,师生普遍反映难教、难学、难记[2]。《生物统计学》不容易理解和掌握,导致学生缺乏学习兴趣和动力,考试前通过死记硬背接受理论知识,形成短暂记忆,随着时间的延长,所学内容逐渐忘记。这门课程讲授完之后,学生不会灵活运用其中的方法,也不会设计一个简单的试验,更不会将生物统计学的基本理论、技术和常用统计方法应用到本科毕业论文设计中,导致理论教学与实践应用脱节,显然未达到教学目的。以往《生物统计学》教学以单纯理论教学为主,不设或很少开设实验课。因此,笔者结合《生物统计学》的基本原理,利用计算机和统计软件,开设了《生物统计学》实验课,并尝试对该课程的实验教学方法进行改革探索。
实践教学环节非常有利于提高大学生的培养质量,而《生物统计学》课程教学的实践环节亟待加强。在《生物统计学》实验教学过程中,我们利用计算机辅助实验教学,开设以下实验课:(1)《生物统计学》某章节理论知识讲授完之后,利用计算机和相关统计软件,开设相应的实验课。在实验课上,教师通过统计软件演示例题的计算和分析过程,并讲授统计软件的使用方法,学生根据所学理论知识,结合实例在计算机上借助统计软件进行操作,这样使学生获得知识更加直接与快速。(2)学生参与试验设计和科学试验。学生要在生产实践或实验室中设计试验,亲自参与试验数据的采集,并对试验数据进行统计和分析,这样有利于加深学生对所学内容的理解。《生物统计学》教学开设了如下实验:
1 利用Excel绘制常用统计图
Excel绘制图形功能强大,各种版本的Excel软件均提供了14种标准图表类型,每种图表类型中又含有2~7种子图表类型;还有20种自定义图表类型可以套用。讲授完试验资料的搜集和整理后,开设利用Excel绘制常用统计图的实验课。学生在实验课上利用Excel绘图时,可以对图表区、绘图区、数据系列、坐标轴、图例、图表标题的格式,例如文字的颜色、字体、大小,背景图案、颜色等进行修改和调整,使修饰后的图形更加美观好看,爽心悦目。当图和数据放在一张工作表上、学生改变绘制图形的数据时,其图形将发生相应变化;将鼠标放在图中某数据点上,在鼠标下方将弹出一个文本框给出数据点的具体数值;用鼠标单击绘图区中的“数据系列”标志,其图所属数据单元格将被彩色框线围住,便于用户查看图形的数据引用位置。在“数据系列”点击右键可以向散点图、线图、条形图等添加趋势线,并可给出趋势线的方程与决定系数。
2 利用Excel进行数据描述统计分析
讲授完试验资料特征数的计算后,开设利用Excel进行数据描述统计分析的实验课。首先选用与生活联系紧密的数据资料,让学生利用Excel计算这些数据的平均数、中位数和众数,测定和分析这些数据的集中趋势,然后利用Excel测定样本标准差、总体标准差和四分位数,让学生分析这些数据的离散趋势。另外,让学生利用Excel分析总体次数的分布形态,计算总体平均值的置信区间,有助于识别总体的数量特征。总体的分布形态可以从两个角度考虑,一是分布的对称程度,另一个是分布的高低。前者的测定参数称为偏度或偏斜度,后者的测定参数称为峰度。
3 利用Excel进行统计假设检验
讲授完统计推断之后,利用Excel进行统计假设检验的实验课。统计假设检验是根据随机样本中的数据信息来判断其与总体分布是否具有指定的特征[1]。我们选择实际案例,让学生提出假设,利用Excel中适当的统计方法计算检验的统计量及其分布,确定显著性水平和决策规则,最后推断是否接受假设,得出科学合理的结论,这个过程就称为假设检验或统计假设检验。统计假设检验的方法多样,通过比较就会发现它们的基本方法和步骤大同小异,例如t检验、u 检验、x2检验等,可以详细讲述其中1~3种假设检验方法,其它假设检验方法可以采用启迪和推导方式让学生利用统计软件自行轻松地学习和操作。
4 利用Excel和SAS软件进行方差分析
讲授完方差分析之后,开设利用Excel和SAS软件进行方差分析的实验课。利用Excel只能进行单因素或双因素(包括可重复双因素和无重复双因素)方差分析,而涉及双因素随机区组试验、三因素试验和裂区试验等试验数据的方差分析,即让学生利用SAS软件进行多重方差分析。另外,Excel中的单因素或双因素方差分析只能给出方差分析表,不能进行平均数的多重比较,也无法用不同字母标记法表示差异显著性的结果,这些也都需要利用SAS软件。
5 利用多种统计软件进行回归分析
由一个或一组非随机变量来估计或预测某一个随机变量的观测值时,所建立的数学模型及所进行的统计分析,称为回归分析[1]。按变量个数的多少,回归分析有一元回归分析与多元回归分析之分,多元回归分析的原理与一元回归分析的原理基本相似。按变量之间的关系,回归分析可以分为线性回归分析和非线性回归分析。利用统计软件进行回归分析时,首先让学生如何确定因变量与自变量之间的回归模型;如何根据样本观测数据,估计并检验回归模型及未知参数;在众多的自变量中,让学生判断哪些变量对因变量的影响是显著的,哪些变量的影响是不显著的。在方差分析实验课上,先让学生利用Excel进行简单的线性回归分析,然后利用SPSS软件进行相关与回归分析,最后利用SAS软件进行多元线性回归分析和逐步回归分析,使学生了解不同统计软件的特点、功能和作用。
6 利用基本原理设计试验
试验的精确度高低取决于试验设计的各个方面,只有通过有效地控制试验误差才能提高试验精确度。因此,教师有必要正确引导大学生在试验过程中要做到操作仔细,这样有利于提高学生的科研素质。在试验工作中,从试验资料中发现潜在的规律性是极其重要的,这需要科学合理地运用统计学的基本原理和方法。讲授完试验设计之后,要求学生根据试验设计的基本原理,在生产实践或实验室内提出试验设计的基本思路,制定试验方案。然后,学生分组讨论试验设计的可行性,并进行纠正和修改。在试验前期,学生应进行试验前期准备工作。在试验过程中,学生要考虑试验条件的差异对试验数据的影响,可根据试验设计的原理和技巧分析试验出现的问题,使学生获得的理论知识与实际联系起来,从而加深对理论知识的理解。试验结束后,获得大量的试验数据,需要选择正确的统计方法分析试验资料,得出科学合理的结论,以达到研究目的。最后,教师根据学生设计的试验思路、方案、步骤及作出的试验报告给予评价。通过开设试验设计实践课,可以使学生明确试验的目的、试验设计方法、试验因素及水平等内容,有利于提高学生设计试验方案的能力。
实践证明,开设《生物统计学》实验教学后,学生能够在计算机上借助相关统计软件亲自统计试验数据,利用所学的统计学方法分析和检验试验结果,最后得出可靠的结论。最后毕业时,学生能根据试验设计的基本原理,可独立完成毕业论文试验设计,实施设计的试验方案,获得试验数据资料。由于试验数据统计分析耗时,而且繁琐,因而过去毕业生害怕对试验数据进行统计分析。自从我们结合《生物统计学》的基本原理,利用计算机和计软件开设了该课程的实验教学后,学生轻松地掌握了该课程的基本原理和统计分析方法,统计和分析数据的速度、精确度均大幅度提高。现在部分学生还能帮助教师进行科研课题的数据处理和分析,毕业论文水平也大大提高。
《生物统计学》教学实验课的开设,使学生从被动学习转变为积极主动地学习,培养了学生进行科学试验设计的能力,初步掌握开展科学试验设计的方法;培养学生掌握正确收集、整理试验资料的方法,能利用生物统计方法对试验资料进行正确的统计分析;培养学生掌握常见统计软件的使用方法和统计方法。《生物统计学》实验课深受学生的欢迎,这也是对该课程实验教学的尝试和改革探索的肯定。在该课程实验教学过程中,笔者深刻体会到要提高《生物统计学》课程的实验教学效果和质量,教师需要投入时间与精力,钻研实验教学内容,提高教学水平,转变实验教学理念,不断探索和优化多元化的实验教学方法。
参考文献